
NASA CR-

AEROPHYSICS RESEARCH CORPORATION JTN-11
TECHNICAL NOTE

(NASA-CR-141598) THE ENGINEERING DESIGN N75-1711INTEGRATION (EDIN) SYSTEM (Aerophysics
Research Corp., Houston Tex.) 239 p HC

CSCL 09B Unclas
G3/61 09633

THE ENGINEERING DESIGN INTEGRATION
(EDIN) SYSTEM

by: C. R. Glatt, G. N. Hirsch, G. E. Alford,
W. N. Colquitt and S. J. Reiners

prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Johnson Space Center
Houston Texas 77058 Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

'jis Cnoe

N-OT ICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

1. Report No2.2. Govern ent Accession No. 3. Recipient's Catalog No.

NASA CR-

4. Title and Subtit!e 5. Report Date

THE ENGINEERING DESIGN INTEGRATION (EDIN) SYSTEM.
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

C. R. Glatt, G. N. Hirsch, G. E. Alford,
W. N. Colquitt and S. J. Reiners 10. Work UnitNo.

9. Performing Organization Name and Address

Aerophysics Research Corporation 11. Contract or Grant No.
18100 Nassau Bay Drive, #147
.Houston, Texas 77058 NAS9-13584

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration-

Lyndon B. Johnson Space Center 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The report provides a description of the Engineering :Design

Integration (EDIN) System as it exists at Johnson Space Center.

A discussion of the EDIN System capabilities and-applications

are presented.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Design, synthesis, executive, Unclassified - Unlimited

EDIN, data base, design simula-

tion, multiple programming.

19. Securit;y Jlaif. (of this report) 20. Security Classif. (of this page) 21.

Uncla;si fied Unclassified

ior solo by the National Tchnical Information Service, Springfield, Virginia 22151

AEROPHYSICS RESEARCH CORPORATION . JTN-11
TECHNICAL NOTE

THE ENGINEERING DESIGN INTEGRATION
(EDIN) SYSTEM

by: C. R. Glatt, G. N. Hirsch, G. E. Alford,
W. N. Colquitt and S. J. Reiners

prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Johnson Space Center
Houston Texas 77058

December 1974

PREFACE

This report describes the Engineering Design Integration (EDIN)
system in operation at Johnson Space Center (JSC) at the com-
pletion of the contract NAS9-13584, "Extended Optimal Design
Integration (Extended ODIN) Computer Program." The study was
carried out in the period from June 1973, through December 1974,
with funds provided by the National Aeronautics and Space Admin-
istration, Johnson Space Center, Engineering Analysis Division,
Launch Analysis Section. The report specifically describes the
Univac 1110, Exec 8 EDIN system at JSC. Earlier systems adapted
to the CDC 6600 have been installed at the NASA Ames Research
Center facility, the USAF Flight Dynamics Laboratory facility
and the Langley Research Center facility.

The original ODIN system was initially developed during 1971
and 1972 under parallel contracts with the National Aeronautics
and Space Administration, LRC (NAS1-10692) and the USAF Flight
Dynamics Laboratory (F33615-71-C-1480). The original system
was developed for CDC 6000 series computers but the system has
since been converted to the Univac 1100 series computer under
contract (NAS9-12829) to NASA Johnson Space Center.

The present contract (NAS9-13584) resulted in the expansion of
the EDIN technology library, the development of a number of
general and special purpose utilities, the development of a
geometry technology module and an executive data processor.
Numerous applications of the software developed have been
accomplished, some of which are presented herein.

iii

TABLE OF CONTENTS

Page

SUMMARY.................. 1

INTRODUCTION..3
Study Objectives....
Study Approach 4

THE.EDIN SYSTEM 6
THE COMPUTER 6

Computer Operating System.................... 6
The Executive System (Exec 8)..................8
System Processors 12
Language Processors........................... 13
Utility Processors 13
Subroutine Libraries...........................14
Applications Programs......................... 15

Computer Concepts and Definitions 15
Absolute Element...............................15
Collection.................................... 15
Element 15
Language Processor............................ 15
Program 16
Processor...16
Relocatable Element........................... 16
Symbolic Element..............................16
Catalogued File...............................16
Cycle ... 16
Data Base...................................... 17
Data File.....................................17
External File Name 17
File 17
Internal File Name.............................17
Master File Directory 17
Private File..................................17
Program File..................................17
Public File17
Project............. 17
Qualifier....................................17
SDF Format 18
Temporary Program File (TPF$) 18
Temporary File 18

Run Stream Concept.................................18
File Names and Element Names 19
Executive Control Statements 20

Control Statement Format....................... 20
Label Field.................................... 20
Operation Fields...............................21
Operand Fields............................... 21
Transparent Control Statements 21

v

PRECEDING PAGE BLANK NOT pTME

TABLE OF CONTENTS (Continued)
Page

Summary of Control Statements...................21
File Utility Routines.................. 22
Systems Symbolic Processors 26

ELT Processor o.................26
Data Processor26
ED Processor 27
CULL Processor..................................27
LIST Processor.................................27

The Collector ..29
DATA MANAGEMENT SYSTEM 31

DMAN Software Package..............................33
DMAN Usage 34
A Discussion of IT...............................35
A Discussion of IOP............................35

The DLG Processor...................................37
DLG Usage 38

Control Statement..........................38
Option Specifications......................38
Syntax Definition.........................40
Summary of DLG Directives..................40
Descriptions of Control Directives.........41

Processor Interface 45
Usage......................... 45
Restrictions 46

Technology Module Interface Package..................47
PROGRAM LIBRARY ... 50

Geometry 50
Aerodynamics, Stability and Control 50
Propulsion...................................51
Mass and Volumetric Properties.......................51
Performance.................52
Thermodynamics........ 52
Structures................... 53
Cost............ 53
Environmental Protection53
ABLATOR: One Dimensional Analysis of the Transient

Response of Thermal Protection Systems..........54
ACMOTAN: Linear Aircraft Motion Analysis............54
AESOP: Automated Engineering and Scientific

Optimization Program............................55
AFSP: Automated Flutter Solution Procedure..........55
AIRFOIL: A Program for Generating Geometric and

Aerodynamic Characteristics of Airfoil Sections.55
ATOPII: Atmospheric Trajectory Optimization.........56
COAP: Combat Optimization and Analysis Program......56
CONPLOT: Aircraft Configuration Plot................57
DAPCA: Development and Production Cost of Aircraft..57

vi

TABLE OF CONTENTS (Continued)
Page

DATCOM: Configuration Design Analysis Program
(TRW) 57

DATCOM2: Configuration Design Analysis Program
(MDAC) 57

ENCYCL: Design Point Performance of Turbojet and
Turbofan Engine 58

GENENG: A Program for.Calculating Design and Off-
Design Performance for Turbojet and Turbofan
Engines...58

GENENGII: A Program for Calculating Design and Off-
Design Performance of Two and Three Spool
Turbofans with as many as Three Nozzles.........58

GEOMETRY: Body Coordinate Generator 59
HABACP: Hypersonic Arbitrary Body Aerodynamic

Computer Program.................................59
HDG: Heading Program 59
IMAGE: Configuration Display Program 60
MINIVER: Aerodynamic Heating Program 60
PADS: Performance Analysis and Design

Synthesis Program 60
PANEL: A Program for Generating Panelled Con-

figuration Geometry 60
PLTVIEW: Program for Generating Separation Plots...61
POST: A Program to Optimize Simulated Trajectories.61
RDPRO: POST Plot Data Generation Program 61
PRESTO: Program for Rapid Earth-to-Space Tra-

jectory Optimization...........................62
PRICE: A Program for Improved Cost Estimation...... 62
REPORT: Report Generator 62
SBOOM: Sonic Boom Prediction for Shuttle Type

Vehicles....................................63
SEPARATE: The Program to Simulate Separating

Stages of Launch Vehicles 63
SKINF: Turbulance Skin Friction Drag Program........63
SSAM: Swept Strip Aeroelastic Model 64
SSSP: Space Shuttle Synthesis Program..............64
TOLAND: Take-Off and Landing Program 64
TOP: Trajectory Optimization Program 65
TOPLOT: Plot Generator for TOP 65
TREND: Subsonic/Supersonic/Hypersonic Aero-

dynamic Trade-Off Program.......................65
VAMP: Volume, Area and Mass Properties66
VSAC: Vehicle Synthesis for High Speed Aircraft....66
WAATS: Weights Analysis for Advanced Trans-

portation Systems 67
WDRAG: Zero-Lift Wave Drag Program..................67
WETTED: Wetted Area in Reference Length Program 67

LIBRARY ADDITIONS AND MODIFICATIONS 68

vii

TABLE OF CONTENTS (Continued)
Page

AIRFOIL: AIRFOIL GENERAT ON PROGRAM.......................70
CIPHER: REPORT WRITING PROGRAM...........................72

Physical Characteristics............................72
Program Usage. 73

COT PROCESSOR... 82

FLOWGEN: AUTOMATIC FLOW CHART.GENERATOR PROGRAM..........83
Program Control 83

Program Input.. 83

GTM: GEOMETRY TECHNOLOGY MODULE... 85

Program Description 85
Physical Characteristics.............................. 89
Program Usaae 90

Control Cards 90

Program Input .. 90
Master Level Language.......................90

Descriptions of the Commands........................92
Image Input....................................92

Cluster Edit 95
Edit Commands 95
Output Commands 96
Transformation Commands 96
Display Commands. 97
Description of Commands 98
Scaling Parameters............... 104
Bounding Commands..............................105
Register Commands 106
Miscellaneous Commands 106

Segment Edit...107
Point Edit Commands...........................107
Segment Level Command 111
Program Output.................................112

HABACP: HYPERSONIC ARBITRARY BODY AERODYNAMIC COM-
PUTER PROGRAM.......................................113

IMAGE DISPLAY COMPUTER PROGRAM 116
The Display Device..................................116
Virtual Graphics....................................116
Program Usage.......................... 117
General Program Information........................117
$TYPE32 Inputs......................................117
Geometry Data.......................................121
$TYP343 Inputs.......................................121

PANEL: GEOMETRY GENERATION PROGRAM......................127
Program Description 127

COPY5 Module 127
ELLIPS Module129
Cubic Patch Module 129
TANK Module. 132
Double Bubble Tanks 132

viii

TABLE OF CONTENTS (Continued)
Page

TZOID Module 132
Physical Characteristics...........................132
Program Usage....................................... 136
Program Output.....................................141

DBBOUT Output Descriptions....................141
TANK Output Descriptions...................... 143

PLOTTR: AN INDEPENDENT COMPUTER PROGRAM FOR THE
GENERATION OF GRAPHICAL DISPLAYS 144
Program Description................................144
Plot Data Input Option............................. 146

Array Format 146
Observation Format............................. 146
Alternate Data File...........................147

X-Y Plots ... 147
Plot Positioning. 149
Line Type and Symbols..........................150
Data Scaling................................... 150
Scale Annotation 151
Grid Generation...............................151
Title Generation 151

Auxiliary Plot Text 151
Virtual and Display Window..........................152

The Virtual Window 152
Contour Plots......................................155

Generation of Contour Vectors 155
Two Ambiguous Cases 159
Loading the Data 160
Contour Definition............................. 161
Title and Axis.................................161

Program Usage.. 162
Program Input...................................... .163

$PLOTIN Namelist Data 164
Physical Characteristics...........................170
Program Loading..170

RDPRO: POST PROFILE TAPE READ PROGRAM 174
Program Usage....................................... 174

Example Input..................................174
Program Output.....................................175

SFIT: A FURFACE FITTING PROGRAM 178
Program Description1 .8
.Program Usage...................................... .181

Control Cards 181
Program Input...................................... .181

$IN Inputs..................184
$SECT Inputs...................................184

Program Flow Logic 184
Program Output.. 184

ix

TABLE OF CONTENTS (Continued)
Page

SIZER: A PRELIMINARY SIZING PROGRAM FOR LAUNCH VEHICLES.186
Program Description 186
Program Usage..................................... .188
Input Procedure 188
Flow Logic.... 188
Program Output 188

TANK: A PRELIMINARY TANK DESIGN PROGRAM 192
Program Description.................................192
Physical Characteristics........................... 192
Program Usage 194

Program Input 194
Program Output................................. 196

VL70: A PROGRAM FOR READING AERODYNAMIC DATA TAPES......197
Program Description.................................197
Physical Characteristics............................199
Program Usage..199

Program Input...................................199
Program Output.................................199

WAB: .A PROGRAM FOR COMPUTING WEIGHTS AND BALANCES.......202
Program Description 202
Program Usage 203

Control Cards 203
Input Procedure.....................................203

$IN Input Set.................................. 204
$BOX INPUT SET...................................205
Fixed Format Surface Data......................205

Program Outputs 206
Program Flow...................................206

APPLICATION OF THE SYSTEM209
Heavy Lift Booster (4 SRMS).........................209
Heavy Lift Booster (5 SRMS).........................209
Nuclear Waste Disposal Heavy Lift Booster 209
SO147B Payload/Body Volumetric Study 211
SO147B Heavy Lift Booster 211
Space Station Evaluations 211
Evaluations of Shuttle with the J2S Engine...........211
Shuttle Orbiter c.g. Analysis 212
Sample Analysis..................................... 212

Definition of Analysis Tasks................... 212
Selection of Analysis Programs 214
Intercommunication Data 214
Generation of a Run Stream 215

CONCLUDING REMARKS....................................... 225
REFERENCES... 226

x

THE ENGINEERING DESIGN INTEGRATION (EDIN) SYSTEM

By: C. R. Glatt, G. N. Hirsch, G. E. Alford,

W. N. Colquitt and S. J. Reiners

Aerophysics Research Corporation

SUMMARY

The EDIN system is a digital computer program complex for the
evaluation of aerospace vehicle preliminary designs. The system
consists of a Univac 1100 series computer and peripherals using
the Exec 8 operating system, a set of demand access terminals
of both the alphanumeric and graphics types and a library of
independent computer programs. The program library contains
programs for estimating all major flight vehicle characteristics
such as aerodynamics, propulsion, mass properties, trajectory
and mission analysis, cost, steady state aeroelasticity, flutter
and stability and control. There are also utility programs in
the library for generating and controlling the flow of design
data within the computer program complex.

The data base used by the EDIN system consists of dynamically
constructed name addressable region of online storage which can
be subdivided into user established classes of data. Each class
represents a subset of the available data. A data manipulation
program called the DLG processor is used for the construction
and maintenance of the data base. It interrogates the data base
to satisfy data interface requirements among the technology pro-
grams. In addition, the DLG processor can address all or por-
tions of online structured data sets for insertion as part of
the input stream of the technology programs.

The executive control of library program execution is performed
by the Univac Exec 8 operating system through a user establish-
ed run stream. Any set of vehicle component matching and sizing
loops can be defined by partial run streams (or design sequences)
consisting of control cards and/or technology input data.
There is no effective- limit on the number of design sequences
which may be established by the partial run stream technique.
A data linkage of the design sequences with the data base is
provided by the DLG processor. DLG modifies the partial run
streams in accordance with user instructions within the partial
run stream.

The EDIN system can be operated in a demand or batch environment.
In the demand mode some interaction with the data base and
technology modules is available. Usually a combination of

1

demand and batch operations is employed in the evaluation of
preliminary designs using this sytem. Several applications
representing samples of the type of design support activity
have been accomplished with the EDIN system.

These applications along with a description of new and existing
software in the EDIN system are as described in this report.

2

INTRODUCTION

A great deal of effort in the last several years has been
expended in the pursuit of computer aided design capability

which can be used effectively in the engineering design
environment. These efforts have met varying degrees of success.
References 1 through 16 describe a number of approaches to the

problem. Most capabilities have been developed to support
design synthesis for the study of vehicle concepts. They are
usually implemented by one of two methods:

1. The vehicle under study is completely synthesized
within a single computer program.

2. The vehicle under study is analyzed using separate
technology modules which are linked by independent
executive program control.

The use of the first method requires extensive computer program-

ming and checkout before simulations can begin. The method is
characterized by very large programs, limited applicability and
complex data setup requirements. Programming bugs that appear
after program checkout can cast doubt on simulation results.
In addition, program modification required for design concept
changes can cause delays in the engineering analysis process.
In summary, the single program concept does not provide for
a powerful computer aided design capability.

The use of the second method eliminates the need for large pro-
gramming efforts allowing design simulations to begin almost
immediately after a concept is formulated. Data setup is
similar to the setup of the individual TM's. The executive
program control concept effectively supports design simulations
for conceptual studies involving a relatively small number of
users. The concept does not provide the computer aided design
environment necessary to support a large design staff nor does
it permit sufficient user interaction with the analysis process.

Study efforts at JSC during the past eighteen months have resulted
in the development of the EDIN (Engineering Design Integration)
System. The system uses the independent technology module (TM)
concept of reference 9 and an expanded version of the data
management system of reference 10. The Univac Exec 8 operating
system provides the program linking capabilities and the file
management software to drive the EDIN system. A data processor
called DLG has been developed for merging data base information
with the normal input stream of the TM's and for storing
technology data from the TM's in the data base. An interactive
geometry module, which also uses the EDIN data base' concept,
has been developed for the generation, maintenance and storage

3

of geometry data. The stored geometry can be retrieved and used
by other technologies. Both two and three dimensional graphical
analysis modules have been adapted for use in the EDIN system
and a number of general and special purpose utilities have been
developed to support design analysis.

The EDIN system, as it currently exists, can be operateC in a
batch or demand mode. The system has limited interactive
capability but lacks the essential hardware features to qualify
it as an interactive system. A typical operating mode, is a
combination of demand and batch modes of operation. The user
of the system constructs a run stream from stored input data
elements. The run stream consists of design sequences (partial
run streams) of technology modules selected for the design
analysis at hand. The most current design information is
obtained from the EDIN data base. A configuration analysis is
performed using the Geometry.Technology Module and auxiliary
programs. The constructed run stream is submitted to the com-
puter for execution and a design analysis follows. The user
has options of updating the data base with the information
obtained and/or generating summary report information to
support his analysis.

Study Objectives

The objectives in the development of the EDIN system are to pro-
vide Computer Aided Design (CAD) capabilities, which span the
engineering functions of the preliminary design process to re-
duce the design analysis time and to improve the integrity of
the design. To support the objectives, JSC has provided to the
EDIN project storage tube terminals, teletype compatible termin-
als and a MOPS terminal connected to the Univac 1100 series host
computer. The terminals provide the primary interaction with
the large scale TM's executing on the host computer. The EDIN
project staff was charged with the responsibility of software
development required to support the objectives.

Study Approach

The study approach placed significant emphasis on the applica-
tion of the developing system. The NASA technical monitor im-
posed study requirements on the EDIN project. These requirements
were used by the EDIN project staff to perform the required
design analysis. The staff members defined specific program
developments using the contract statement of work as a guideline.
The development phase was aimed at the modification or develop-
ment of software which more adequately supported the original
design analysis. Following the program development phase, the
same or similar design analysis was performed using the newly
developed software. The sequence was repeated for each set of
NASA directed study requirements.

4

The study approach is considered to have provided the best
possible end product for the funds expended. This volume pre-
sents the state-of-the-art of the EDIN system at JSC and
describes the software developments and applications performed
under the contract.

5

THE EDIN SYSTEM

The components of the system, shown schematically in figure 1,
consist of the computer and a library of the technology modules
(TM), utilities and data bases. The system can be operated
from demand terminals in a batch mode or a combination thereof.
All of the major technologies, such as aerodynamics, propulsion
and structures, are represented in the TM library. The utility
elements include graphics, plotting and report generation. The
technology programs provide the real design analysis capability
which must be performed to obtain evaluation of any vehicle
design. The utility elements aid the designer in obtaining a
better understanding of the results of the analysis and provide
a means of improving or expediting the design analysis. They
also permit the designer to transfer or transform data generated
by one program for use by other programs or for use by the
analyst.

Since the system comprises literally millions of source cards,
some precautions have been taken to provide a usable system
capable of interpretation by designer, engineer and programmer.
The major precaution has been the creation of a system which is
truly modular in the sense that it consists of many independent
computer programs. Any one of these programs can be revised,
extended or replaced without affecting the other program elements
of the system in any way. External to the technology programs
themselves, a data base of common information is maintained by
an executive data processor. Each technology program may draw
upon the data base for information as required. As a consequence
of the construction concepts employed, the specialists in any
technology area are able to phrase the analysis of the design
without regard for the other technologies involved other than
the interfaces with the common data base. The common data base
attributes are defined by the design staff and can consists of
all information which is communicated between elements or com-
municated from the EDIN system itself to the staff. The data
represents a subset of the total amount of information generated
by all of the programs within a given design sequence. When
combined with the normal input data, it is sufficient to com-
pletely define the program under study. When combined with the
normal output, it represents the data description of the vehicle
performance and mission requirements.

THE COMPUTER

Computer Operating System

The computer operating system selected for EDIN is the Univac
supplied software for the 1100 series computer including the
executive system (Exec 8), compilers, utilities, subroutine
libraries, etc. The EDIN system draws heavily from the executive

6

READER

TECHNOLOGY

MODULES

UNIVAC

1100 SERIES

UTILITY COMPUTER STORAG

PROGRAMS (EXEC 8)TUBE

OPERATING SYSTEM

DATA MINI

BASE FU MOPS

FIGURE 1 COMPONENTS OF THE EDIN SYSTEM,
FIGURE 1 COMPONENTS OF THE EDIN SYSTEM.

functions for program control and file management. A knowledge

of the control functions of Exec 8 are essential to the user of

the EDIN system. Those control functions which have the great-

est applicability to design analysis are offered to the potential

EDIN userin this section. Detailed information is provided in the

Univac manuals listed in figure 2.

The Univac 1100 operating system is an outgrowth of Univac's
many years of experience in multiprogramming, multiprocessing,
time sharing, communication and real time orientation systems.
It provides the flexible user environment which is essential
to the operation of the EDIN system. A complete set of software
ranging from high level language compilers to basic service
functions is included in the operating system. The six major
categories are:

1. Executive System, (Exec 8).

2. System Processors.

3. Language Processors.

4. Utility Processors.

5. Subroutine Library.

6. Applications Programs.

The first three categories represent the base compliment of
software supplied with the 1100 series computer and maintained
by Univac. They are generally used by the EDIN system without
modification. The user portion of the operating system is
described in the last three categories. The EDIN system takes
advantage of the software which is already available and augments
the software capability in these categories with special modules
dealing primarily with engineering and design integration. The
EDIN interface to the Univac 1100 series computer is shown in
figure 3.

The Executive System (Exec 8). - To take full advantage of the
speed and hardware capabilities of the 1100 series sytems, a
comprehensive internal operating environment is provided in the
Exec 8. This environment permits the concurrent operation of
many programs and directs the computer to react immediately to
the inquiries, requests and demands of many different users at
local and remote stations. The Exec 8 system can store, retrieve
and protect large blocks of data and makes the best use of avail-
able file space.

Only through-central control of all activities of the system can
this environment of the combined hardware and software systems

8

UNIVAC 1100 SERIES OPERATING SYSTEM PROGRAMMER

REFERENCE UP-4144 REVISION 3-

UNIVAC 1100 SERIES EXEC 8 HARDWARE/SOFTWARE SUMMARY

REFERENCE UP-7824 REVISION 1

UNIVAC 1100 SERIES EXEC 8 FORTRAN V

REFERENCE UP-4060 REVISION 2

UNIVAC 1100 SERIES FORTRAN V LIBRARY PROGRAMMER

REFERENCE UP-7876

NASA INSTITUTIONAL DATA SYSTEMS PROCEDURES MANUAL

PART 11 GRAPHICS LIBRARY

PART 20 EXEC 8 SYSTEM

PART 21 EXEC 8 DEMAND SYSTEM

FIGURE 2 UNIVAC 1100 SERIES COMPUTER SYSTEM REFERENCE MANUALS

9

UNIVAC 1100
SERIES COMPUTER

OPERATING SYSTEM
EXEC 8 DATA

.BASE

SYSTEM

PROCESSORS PROCESSORS PPLICATIONS
PROGRAMS SYSTEI

LIBRARY SYSTEM
UTILITIES

EDIN
TECHNOLOGY EDIN
MODULES SUBROUT INE EDIN

LIBRARY UTIITY
PROGRAM

FIGURE 3

THE UNIVC 1100 SERIES COMPUTER,

be fully established and maintained to satisfy the EDIN require-
ments. No user level executive can exercise the necessary con-
trol. The responsibility for centralized control is borne by
the Exec 8 system, which controls and coordinates the functions
of the internal environment. A relatively simple interface to
the executive, based on the run stream concept, is provided
which relieves the users of concern for the internal interaction
between his program and other coexistent programs.

The technical capabilities of the Executive System cover a vari-
ety of data processing activities. The executive system design
offers the versatility of handling batch processing, demand pro-
cessing and real time processing using multiprogramming and
multiprocessing techniques.

Batch jobs may be submitted from remote terminals as well as
from central site equipment. The batch mode is used in EDIN
applications for long running analysis and programs with high
core requirements.

Complementing the batch processing capabilities are the Exec 8
time sharing capabilities. This mode of operation accommodates
simultaneous requests and demands from users at numerous remote
inquiry terminals operating in a demand (or conversational)
mode. All facilities available to the batch processing user
are also available in a demand mode. The primary difference
being that the demand mode permits the user additional flexi-
bility in the statement and control of individual tasks. For
example, when an error is made in the demand mode, the user
simply corrects it online and proceeds rather than suffering
the turn-around cycle inherent in batch processing. The demand
user may interact with the system at various levels which include
the Executive System, a conversational processor or with a user
program. Many conversational EDIN programs take full advantage
of the demand mode. Design analysis can be interrupted at any
point to assure integrity using the demand mode.

The executive system is also designed to be applicable to pro-
grams which have real time requirements. The Univac Communica-
tions Subsystems, together with the scheduling and interrupt
processing features of the Executive System provide an environ-
ment satisfactory for the operation of real time programs.
However, the EDIN system currently uses no real time processing.

The Executive System is designed to ensure effective and effi-
cient utilization of the mass storage devices. The consequence
is an unprecedented ability to relieve users of the responsibility
of maintaining and handling cards and magnetic tapes, thus
eliminating many errors which heretofore have accompanied the

11

use of large scale software systems. At the same time, the
overall operating efficiency is considerably improved. Card
handling is virtually eliminated in the use of the EDIN system.

Permanent data files and program files are maintained on the
mass storage devices, with full facilities for modification and
manipulation of these files. Security measures are established
by the Executive System to ensure that files are not subject to
unauthorized use. Provisions are also made within the Executive
System for automatic relocation of infrequently used files to
magnetic tape, as unused mass storage space approaches exhaus-
tion. When the use of files relocated in such a manner is
requested, they are retrieved and restored under control of the
Executive System with no inconvenience to the user. EDIN makes
heavy use of the permanent files storage for the maintenance
of technology modules, utilities and data bases.

In the executive system the user has a simple means of directing
the execution of the individual tasks of a run and of relaying
operational information concerning therun to the executive.
This is accomplished through a set of control statements rec-
ognized by the executive system. The control language is open
ended and easily expanded so that features and functions may
be added as the need arises.

The basic format of a control statement is quite simple, and
is adaptable to a large number of control functions. Each con-
trol statement consists of a heading character @, or in special
cases a @@ for recognition purposes, followed by a command and
a variable number of parameters. The end of a control statement
is indicated by the end of a card, a carriage return or an
equivalent signal, depending on the type of input device. The
Exec 8 control statements commonly used by EDIN will be discussed.

System Processors. - The system processors are computer programs
which provide the functions required to construct and modify
other computer programs, maintain and modify data files, and
provide diagnostic information upon program termination. The
most commonly used system processors are:

The Collector is designed to provide the user with the
means of collecting and linking subroutines and to produce
an absolute program in a form ready for execution under
control of the Executive System.

A File Utility Processor (FURPUR) consists of a set of
file maintenance routines which provide the flexibility
in management and manipulation of catalogued or temporary
files containing data or programs.

12

The Postmortem Dump Processor (PMD) produces edited dumps
of the contents of main storage at program termination.
Dumps produced dynamically during execution are auto-
matically printed. Individual program parts are identified
with the assistance of diagnostic tables produced with the
absolute program by the collector.

The ELT Processor is used to introduce an element into a
particular program file or make corrections to a symbolic
element in a program file from the run stream.

A File Administration Processor (SECURE) uses a source
language structure which allows the user to periodically
define specific file administration code tasks. The pro-
cessor's functions are to produce backup copies of cata-
logued files, and to provide a recovery mechanism for these
files in case of system failure.

The ED Processor is a text editor which enables a user to
modify or move character strings in either program files
or data files. This program is the primary mode of inter-
action with the EDIN system program and data files.

The Procedure Definition Processor (PDP) accepts source
language statements defining assembler, COBOL, or Fortran
procedures and builds an element in the user-defined pro-
gram file. These procedures may be referenced subsequently
in an assembly or compilation with definition. The pro-
cessor is used in the construction of EDIN programs.

Language Processors. - The operating system provides several
language processors, such as Fortran, COBOL, ALGOL and the
Assembler. Certain of these processors are specifically de-
signed for demand mode operations. Individual documentation
of these processors is provided by,. Univac.

Utility Processors. - The Utility Processors provide
features not essential to the operation of the Exec 8 system
but aid the user in the preparation of data, run streams and
documentation, Univac supplied utility processors are described
below:

FLUSH (Flowcharting Language for User's Simplified Handling)
is a processor which accepts Assembler or Fortran format
input to produce a flowchart.

The SSG Processor is a general-purpose symbolic stream
generator. Any variety of symbolic streams, varying from
a file to data to a run stream which configures an execu-
tive stream, may be generated. Directions and models for

13

building of the desired stream images are conveyed to SSG
through a skeleton which is written in SYMSTREAM, an
extensive manipulative language.

CULL is a processor which produces an alphabetically sorted,
cross-referenced listing of all symbols in a specified set
of symbolic elements. Provisions are included, via options,
to selectively include or exclude defined symbols or symbol
groups from the output.

The DOC Processor accepts file or card input and composes
it into document format according to the user's specifica-
tions. Control statements provide listing and text control,
including pagination, justification, indentation and hyphen-
ation. Document maintenance is provided on a line-image
basis and by content addressing of text character strings.

LIST is a special-purpose processor that provides edited
element listings which include associated element control
information not normally of interest to the user. It is
intended for debugging of software which deals with program
files.

.The development of the EDIN system has added many processors in
the utility category which will be discussed later.

Subroutine Libraries. - An extensive library of subroutines is
provided with the operating system. Subroutines referenced
by user programs are automatically included when the absolute
program is constructed by the collector. The library elements
included fall into the following general categories:

Subroutines that support higher leVel languages (COBOL,
Fortran, ALGOL, etc.).

Subroutines that provide processor interfaces.

Diagnostic Subroutines.

Subroutines for improving the efficiency of file handling.

Service routines, for editing, conversion, segment loading
and so forth.

MATH-PACK mathematical functions.

STAT-PACK statistical functions.

The EDIN system contains a growing library of subroutines to
aid the user in the construction of design analysis programs
and to interface these programs with the EDIN data base.

14

Applications Programs. The operating system provides many
applications programs such as APT, GPSS and PERT. These are
described fully in their corresponding manuals. The EDIN
technology module library falls in this category of programs.
Modules for the evaluation of all categories of engineering
analysis are available.

Computer Concepts and Definitions

The Exec 8 operating system is the principal interface between
the user of the EDIN system and the computer. Exec 8 is respon-
sible for such functions as time and space allocation of system
resources, input-output control, interrupt and file protection.
This section describes the computer concepts which are germane
to the'use of the EDIN system and provides definitions that will
prove, helpful in understanding the remainder of the documentation.

Absolute Element. - An absolute element is a complete program
in binary form suitable for execution by the executive system.
Such elements normally occur as output from a collection of
relocatable elements with all necessary linkages to external
subroutines already defined. The absolute element is the form
which all EDIN programs are stored in the program library.

Collection. - A process by which individual relocatable elements
are combined to form a complete program (absolute element). The
process begins with explicate specification of program elements
to be included and typically involves searching subroutine
libraries for additional unspecified elements required to satisfy
requests from the program under construction. The missing
elements are commonly obtained from libraries of relocable sub-
routines specified by the user. Univac provides an excellent
collector called the MAP processor for constructing computer
programs.

Element. - An element is a named group of information typically
manipulated as a logical subdivision of a file. It often de-
fines a program part such as a subroutine; but can also define
groups of Exec 8 control cards and/or input data information to
the EDIN technology module. There are three basic types of
elements, symbolic, relocatable and absolute. Symbolic elements
contain character strings representing source code, data and
control statements, which can be read by the user if listed.
Relocatable elements are written in binary format and are usually
the result of a compilation or as an option to collection via
the MAP. The absolute element is a complete program unit as
described above.

Language Processor. - The language processor is a computer pro-
gram whose principal functions include compiling, assembling,

15

translating or related operations for a specific programming
language (for example, COBOL, Fortran, Assemblier, etc.). A
language processor translates user supplied symbolic information
into a machine language which can be processed by the Executive
System. The EDIN system uses the Univac supplied language
processors but contains no language processors in its library.

Program. - A program is generally a series of instructions in a
form acceptable to the computer to be executed as a task. The
program usually consists of a collection of subroutines supplied
by the user or obthined from alternate library sources collected
in the form of an absolute element. The EDIN system is based
on the independent program concept and is largely independent
programs constructed for the performance of tasks related to
engineering design integration.

Processor. - A processor is a computer program that is incorpora-
ted as an integral part of the operating system or which has
the ability to manipulate files and elements under control of
the executive. System processors typically reside on the system
library and are evoked in a standardized manner, but are other-
wise treated as ordinary user programs. Processors can also be
constructed by users for specialized manipulation of system
elements and files. The EDIN library contains a number of such
user processors to facilitate the transfer of information within
the system.

Relocatable Element. - A relocatable element is an element con-
taining a program part such as a subroutine in binary format
suitable for combination with other relocatable elements in the
construction of an absolute program. Such elements occur most
commonly as an output of a language processor.

Symbolic Element. - An element containing information in a for-
mat which can be read by a user (typically card images). One
common usage of the symbolic element is as source language in-
put to language processors. However, the EDIN system makes
extensive use of symbolic elements in the construction of design
sequences and for the storage of input data to the technology
modules.

Catalogued File. - A catalogued file is a file maintained by
the executive for an indefinite period, not necessarily related
to the life of a particular run. These files are generally
retrievable by runs other than the run which originally created
the file. In some cases the catalogued file may be assessable
simultaneously by two or more runs.

Cycle. - A cycle is the number used to identify successive up-
dates of files or symbolic elements.

16

Data Base. - The data base is an element or file of information
created for the purpose of storing information for later use.
The EDIN data base consists of program files, data files and
control statement files used for the analysis of aerospace
vehicle designs.

Data File. - A data file is a file in system data format (SDF)
created or updated by one of several operating systems mechanisms.
Usually a system data processor called DATA is used but the ED
processor can also be used.

External File Name. - The external file name is the full name
by which a file is defined to the system for cataloguing purposes.
In addition to the basic name, full identification requires
qualifier and cycle information.

File. - A file is an organized collection of data treated as a
unit and stored in such a manner to facilitate access and
retrieval of the information.

Internal File Name. - An internal file name is an abbreviated
file name used in an individual run stream and related opera-
tions concerning a particular file. An internal file name may
have an implicit association with an external file name; or it
may be associated to a particular external file name by an
explicit executive control statement.

Master File Directory. - The master file directory is a directory
of file names maintained by the executive to control the
retrieval and retention of catalogued information.

Private.File. - A private file is a catalogued file that can
be assigned and accessed only by runs of a particular project.

Program File. - A program file is a specially structured file
containing a group of elements and residing in online mass stor-
age. The program file can consist of symbolic, relocatable or
absolute elements.

Public File. - A public file is a catalogued file that can be
assigned and accessed by a run of any project.

Project. - A project is an accounting identification for a user
of computer resources.

Qualifier. - A qualifier is an extension of the basic name of
a file which can be employed by the user to resolve a variety
of ambiguous naming situations-. Every file has a qualifier which
is normally applied according to executive system conventions
other than being specifically stated in references to the file.

17

SDF Format. - The system data file format is the standard data
format employed by the operating system. SDF is a sequential
fixed block, variable record format in which records may span
more than one block of information.

Temporary Program File (TPF$). - A mass storage file assigned
automatically by the executive to each run as a convenience to
the user in a wide variety of program file and element manipula-
tion operations. The file is assumed as a program file in the
absence of an explicit file name reference.

Temporary File. - A translucent file created by and accessable
-to and existing within the life of a single run only. Temporary
files are assigned to -the un stream for the purpose of tem-
porarily storing information which will not be needed at a
later date.

Run Stream Concept

The run stream concept is employed as the primary interface be-
tween the computer operation system and the user. The run stream
contains the specification of the tasks which will be performed
by the computer. It is the largest working group read and
manipulated by the executive system. The run stream itself is
a sequence of data images which taken as a whole constitute the
specifications of a run. The run stream consists of an @RUN
control statement followed by other control statements and data
which direct the performance of individual tasks. Each task
consists of one or more control statements which provide technol-
ogy oriented or utility operations. Tasks may also be grouped
into partial run streams. The partial run stream may be added
at any point in the run stream by use of the @ADD control state-
ment. The run stream is terminated by a @FIN card which directs
the executive to terminate processing of the run stream. In
the batch stream of operation, the entire run stream is normally
stored on the mass storage facilities before run processing is.
initiated. The executive system schedules the run stream as a
unit. Once initiated, the executive processes the entire run
stream. In a demand mode, the run is normally initiated imme-
diately upon acceptance of the @RUN control statement. The
system continually solicits the demand terminal for additional
run stream input which generally occurs dynamically or on an
interactive or conversational basis. The demand solicitation
continues until an @FIN control statement is submitted from the
demand terminal. Once the run is opened, the executive processes
the control statements as they are encountered. A batch run
terminates as the result of an abnormal task termination. How-
ever, in the demand mode, an abnormal task termination will not

18

terminate the run but simply print the diagnostic message which
causes the abnormal task termination and solicits another execu-
tive control statement.

Every run has an output print file assigned to it by the execu-
tive which is defined at run initiation. However, the-print
file may be reassigned during execution of the run stream. In
generally, all control statements, diagnostic messages and sum-
mary accounting information are printed on the print file as
well as primary output from the user programs. An output punch
file is also created if any user tasks generated punched card
output. In the batch mode all output files are printed at run
termination on a line printer, at the site from which the run
was initiated. In the demand mode printed output occurs at the
terminal as it is generated. Punched output occurs at the cen-
tral site. Printed output may be directed to alternate files
through the use of executive control statements. The alternate
print files can be temporary files which are deleted at the end
of the run or they can be permanent files to be edited or printed
at a later date. The alternate print file capability is the
primary method of controlling the output from large EDIN design
simulations. Print files are selectively created and distributed
in accordance with design analysis requirements.

File Names and Element Names

Each file in the operating system is assigned an unique name to
distinguish it from all other files. The file name is required
in many control statements and directives that are used to
reference files. The following notation is used to specify file
names:

QUALIFIER*FILE NAME(F-CYCLE)/READ KEY/WRITE KEY.

ELEMENT NAME/VERSION(E-CYCLE)

File name is used with the basic name of the file and qualifier
is used to establish uniqueness between files that have the same
basic name. F-Cycle is used to identify a particular file from
a set of related files that have the same qualifier and file
name. Read key and write key are used to obtain read and write
access respectively to the file. These keys are not a part of
the file name for purposes of assigning a file.

Qualifier and file name each consist of from one to twelve
characters selected from the set A to Z, 0 to 9, minus and dollar.
F-Cycle is an integer number. Read key and write key each con-
sist of one to six characters. Any character may be used except
blank, comma, slash, period and semicolon. File names and
element names are used extensively in the EDIN system since the

19

data base elements are constructed within the Univac 1100 series
mass storage media.

Executive Control Statements

Control of the operating system for the Univac 1100 series com-
puter is accomplished through a set of executive control state-
ments. These statements direct the executive system in the
processing of a run. Control statements may evoke executive
functions such as scheduling, assignment of facilities (files)
etc. or may cause Ihe execution of a user program or a processor
(that is, a task). The executive control statements are de-
signed in a compact and descriptive manner to facilitate use
and yet provide access to all of the features of the executive
system. A complete description of the executive control state-
ments is provided in the Univac operating system manuals (see
figure 2). A summary is provided here to familiarize the
potential user of the EDIN system with the background necessary
to understand how the EDIN system operates.

Control Statement Format. - Control statements consist of the
recognition character @ and three major sections:

The Label Field

The Operation Field

The Operand Field

A transparent control statement format is also provided that
consists of a double recognition character @@ followed by only
the operation and operand fields. The transparent control field
is used during the execution of a program, processor or task.
Each of the control sections on the control statement may con-
tain one or more parameter fields and each of the parameter
fields may be further subdivided into parameter subfields. The
recognition character is called a master space @ on a terminal
or a 7/8 punch for punched cards or equivalent for other devices.
The recognition character must always appear in column 1. The
format of the control statements with certain exceptions is
free form. That is the order of the parameters fields within
the control statements is fixed but the parameter fields are
not restricted to a particular column.

Label Field. - The label field is optional on the control state-
ment and is generally used to identify a position in the run
stream to which control is to be skipped following a dynamic
adjustment to the run stream. The label is used in the EDIN
system for controlling design sizing and matching loops.

20

Operation Fields. - The operation fields contain the command
and options associated with the command. Unless the control
statement is used only as a label statement, the command field
must always be specified as it determines the basic operation
of the control statements. The command actually specifies the
execution of a system processor and the options are control
characters which are interpreted by that processor to specify
the actions which the processor will perform. The command field
is terminated by one or more blanks, or if options are specified,
by a comma. On some control statements the options may be
broken into subfields, each of which is separated by a slash
(/). A blank character or series of blank characters separate
the operation field from the operand fields.

Operand Fields. - The operand fields specify parameters associated
with the command fields. They are separated by commas and are
specified by the user as dictated by his requirements. The con-
tent of the operand field, the number of operand fields and
whether each is required or optional varies with the command
selected. Operand fields in turn may contain parameter subfields
that are separated by the slash. For the most part, these sub-
fields are optional within a field. Thus it is possible to
specify parts of a field without specifying the entire field.
A common use of the operand field is to specify file names and
element names on which the control statement is applied. However,
many other uses are made of these fields by the system processors.

Transparent Control Statements. - A special mode of processing
control statements is available during demand processing. This
mode directs the executive to process the control statement
immediately after it is input from a remote entry terminal The
processing called for by the control statement is also done
independently of any current program execution or control state-
ment processing in the run -stream. This mode of executing a con-
trol.statement is specified by a double master space @@.on the
control statement. This mode of operation is called transpar-
ent mode and control statements which can direct or specify this
mode of operation are called transparent control statements.
Transparent control statements are a subset of the total control
statements set. The rules for using the transparent control
statement are identical with normal control statements with the
exception of the additional identification character and the
absence of the label option on the transparent control statement.

Summary of Control Statements. - The executive control statement
can be divided into eight groups:

Scheduling Statement.

Message Statement.

21

Input/Output Directive Statement.

Facility or File Handling Statements.

Data Preparation Statements.

Program Execution Statements.

Dynamic Run Stream Modification Statements.

Checkpoint and Restart Statements.

Figure 4 lists all of these control statements in their respec-
tive groups and presents a brief description of each statement
function. In addition, the following transparent control state-
ments perform the same function as the associated control state-
ments described in the table. @@START, @@LOG,@@ MESSAGE, @@HDG
@@SYM, @@BRKPT, @@ASG, @@MSG, @@HDG, @@SYM, @@BLKPT, @@ASG,
@@MODE, @@CAT, @@FREE, @@USE, @@QUAL, @@CKPAR, @@RSPAR.

Certain control statements, because of the complexity of their
close association with concepts discussed in the Univac supplied
manuals, are not discussed in this report. The user is referred
to the appropriate documentation for detailed usage information
(see figure 2).

File Utility Routines

In addition to the executive control statements, there is a
set of control statements recognized by the executive as calls
for the File Utility Routine (FURPUR). When the executive
encounters a FURPUR control statement, it loads the FURPUR
processor. FURPUR continues to process control statements until
signaled by the executive that the next control statement is
not a FURPUR control statement. Figure 5 summarizes the name
and function of each FURPUR statement. The operand field may
contain file name, element name or a parameter value depending
on the control statement and its use. The FURPUR processor auto-
matically assigns any catalogued file that is not assigned when
the FURPUR control statement was encountered. If the FURPUR
operation is a modification of the file, the processor places
the file in "executive use" state as necessary to carry out the
specified operation. After use, the FURPUR operation automati-
cally returns all files to the assigned status the field had
before the FURPUR processor control statement was initiated.
Temporary files must be assigned by the user. The file utility
routines are critical to the operation of the EDIN system be-
cause the EDIN system uses the mass storage .media of the 1110
series computer for all portions of the EDIN data base.

22

STATEMENT CONTROL
GROUP STATEMENT DESCRIPTION

Scheduling @RUN Appears at the beginning of each run.
Statements Provides accounting, scheduling and

run identification information.

@FIN Appears at the end of each run.

@START Used to initiate the execution of an
independent run.

Message @LOG Places user specified information in
Statements the system log.

@MSG Places a message on an operator's (cen-
tral site) console.

Output @HDG Used to place a heading line on print
Directive output.

Statements @SYM Used to direct nonstandard output action.

@BRKPT Used to segment primary output files
and to close alternate print files.

Facility @ASG Used to assign files (peripheral devices)
Statements and catalogued files to a run.

@CAT Catalogues mass storage files.

@FREE Used to deassign a file and its input/
output device or mass storage area.

@USE Used to set up a correspondence between
internal and external file names.

@QUAL Used to define a file name qualifier.

.FIGURE 4A SUMMARY OF EXECUTIVE CONTROL STATEMENTS,
(PART 1 OF 2)

23

STATEMENT CONTROL
GROUP STATEMENT DESCRIPTION

Dynamic @ADD Used to dynamically expand the run

Run Stream stream.

Modification @SETC Places a value in the condition word.

Statements @JUMP Used to bypass a portion of a run stream.

@TEST Used to test the condition word when
determining portions of the run stream
to be processed or bypassed.

Checkpoint @CKPT Used to establish a checkpoint dump
and that may be used for restart at some

future time.
Restart @CKPAR Used to establish a program checkpoint
Statements dump that may be used for restart at

some future time.

@RSTRT Used to restart a run at some previously
taken checkpoint.

@RSPAR Used to restart a program at some pre-
viously taken checkpoint.

Program @NAME Used to execute a processor.

Execution @MAP Used to call the collector and prepare

Statements an absolute element.

@XQT Used to initiate the execution of a
program.

@EOF Used to separate data within the run
stream.

@PMD Used to take edited postmortem and
dynamic dumps of the program just
executed.

Data @ELT Inserts or updates a program file ele-
Preparation ment from the run stream.

Statements @DATA Used to introduce or update a data file
from the run stream.

@END Used to terminate a data file.

@FILE Used to cause the direct creation of a
file containing data taken from the run
stream.

@ENDF Used to terminate the data that follows
the @FILE statement.

FIGURE 4B SUMMARY OF EXECUTIVE CONTROL STATEMENTS,
(PART 2 OF 2)

24

FURPUR
CONTROL
TATEMENTS DESCRIPTION

@CHG Changes element name, version name, file name,
read key, write key and mode of.a file.

@CLOSE Writes two hardware EOF marks on a magnetic tape
file and rewinds the tape.

@COPIN Copies elements from an element file located on
magnetic tape into a program file on mass storage.

@COPOUT Copies a program file, or selected elements from
a program file, located on mass storage onto a
magnetic tape file in element file format.

@COPY 'Copies a file or element from one file to another.

@DELETE Drops catalogued files or marks elements in a pro-
gram file as deleted.

@ENABLE Clears the disable flags for catalogued files.

@ERS Returns to the system all mass storage space
allocated to a file.

@FIND Locates an element in a magnetic tape file (file
must be in element file format) and positions the
file before the element's label block.

@MARK Writes two hardware EOF marks on a magnetic tape
file and positions the tape between the EOF marks.

@MOVE Moves a magnetic tape file forward or backward
over a specified number of EOF marks.

@PACK Rewrites an entire program file, removing specified
types of elements (depending on the options speci-
fied) and all elements marked as deleted.

@PCH Punches program file elements into 80-column cards.

@PREP Prepares a program file to be searched for sub-
routine references.

@PRT Provides a listing of the master file directory
items for catalogued files, information regarding
temporary files, the table of contents of a program
file or the text of symbolic elements. Listings of
absolute or relocatable elements may be obtained
using the LIST processor.

@REWIND Rewinds magnetic tape files back to the load point
of the first real.

FIGURE 5 FURPUR CONTROL STATEMENTS,
25

Systems Symbolic Processors

Files and elements which contain symbolic data can be processed
in various ways using the systems symbolic processors that are
available to the user. Available processors are:

1. CULL - which generates a listing of symbols cross-
referenced to the element and line in which they are
found.

2. DATA - which inserts, updates and corrects data files
from within a run stream.

3. ED - which permits converanti n1 al edi ing of symh lic
files and elements.

4. ELT - which inserts and updates symbolic elements in
a program file from within a run stream.

5. LIST - which generates an edited listing of any type
of element.

In addition to the symbolic processors, the @END control state-
ment which operates in conjunction with the DATA and ELT
processors, is available.

ELT Processor. - This processor introduces an element into a
particular program file and makes corrections to the symbolic
element in a program file specified in the run stream. If a
new element is specified, the input images to the ELT processor
are placed in the run stream following the ELT control statement.
If the ELT processor is used to modify an existing file, then
modifications placed in the run stream are made to the element.
Options are available for processing both data and control state-
ment elements. If control statements are to be processed by
the ELT processor, then the D option must be evoked, and the
@END control statement must be used after the last statement
to be processed. The rules for modifying the existing elements
using the ELT (and other data) processors are described in the
appropriate Univac documentation (see figure 2).

Data Processor. - The data processor introduces, updates and
corrects system data format (SDF) files from the control string.
The data processors operations are terminated by the @END con-
trol statement who sentential matches are sentential on the
data control statement. Any control statement with the exception
of the @FIN and @ADD,D control statement may be processed by
the data processor. The data processor allows the user to build
data files which are an entire or partial run stream. These

26

files can then be called on by the @START control statement to
start an independent run or by the @ADD control statement for
inclusion in the current or subsequent runs.

ED Processor. - The ED processor is a TEXT editor which allows
the user to conversationally edit the symbolic file or element.
It allows insertion, deletion and replacement of text and can
merge and split existing files and elements. The ED processor
is by far the most versatile and widely used symbolic processing
capability on the Univac computer. The ED processor operates
in two modes, input and edit. In the input mode all lines
entered are directly inserted into the text. In the edit mode,
various commands may be used to modify existing text. Changing
between modes is accomplished by entering a blank line carriage
return. Most editing commands explicitly reference a single
part of the text. This is accomplished by an internal cursur
maintained by the ED processor. The cursur may be positioned
directly by some commands and indirectly by others. A thorough
understanding of the use of the ED processor and the associated
commands is recommended to the ED user. However, figure 6 pro-
vides a brief list of the commonly used edit commands which are
available for the construction and maintenance of symbolic files.

CULL Processor. - The CULL processor scans a collection of
symbolic elements and produces a cross reference listing of the
symbols found; the elements and the lines on which they occur.
A list of symbols which are either to be omitted from the sort
or the only symbols to be included in the sort may be specified.

LIST Processor. - The LIST processor produces an edited listing
of any type of element. For symbolic elements, the image, the
line number and the appropriate procedures name table is printed.
For relocatable and absolute elements, each text word is printed
in twelve digit octal code.

27

COMMAND DESCRIPTION

ADD Adds all or portions of a named file or element to
the current file or element. The added information
may be in place or at the end of the current file.

CHANGE Replaces a specified character string with another
character string. The action may be specified
global or first occurrence only. The action may
also be specified for a set number of lines or for
all lines beyond the cursor.

DELETE Deletes lines from the text. The action may be for
the current line, a set number of lines or a speci-
fied range of line numbers.

DITTO Duplicates a line or range of lines from within the
current file at the cursor position.

INSERT Inserts a specified string of characters at the
cursor position.

LAST Positions the cursor at the last line of text.
LNP Prints a specified line or range of lines of text

together with line numbers.

LOCATE Searches the text from the cursor position for a
specified string of information.

MOVE Moves a specified line or range of lines to the
cursor position.

NUMBER (Numeric input) Locates and positions the cursor
at the specified line number.

FIGURE 6 COMMON ED PROCESSOR COMMANDS,

28

The Collector

In addition to the language processor which generates program
elements in relocatable form, the Univac 1100 series operating
system provides the ability to combine the relocatable elements
generated by a language processor into an executable (absolute)
element. This combination or collection of relocatable elements
is done by the @MAP system processor (or collector). The abso-
lute element produced by the collector is structured such that
the executive program loader can place it in execution. Once
the absolute program has been created (that is, collected), it
may be saved and re-executed many times. The program need only
be recollected when a modification to one or more of the re-
locatable elements is desired.

An absolute element (program) is placed in execution through
the use of a program execution control statement (@XQT) within
the control stream. When an @XQT control statement is encount-
ered by the executive, the program named in the operand field
is retrieved from its mass storage file, loaded into main stor-
age and executed. For a special class of programs (processors),
the processor control statement initiates execution.

During execution a program can control which parts of the
absolute elements are in main storage by requesting the execu-
tive to load previously defined program overlay segments or by
linking to program banks. In addition, the program has the
capability of attaching to or linking to other previously de-
fined absolute elements. The program has the ability during
execution to dynamically control the execution of other semi-
independent absolute elements.

The collector is called by the @MAP processor control statement.
It provides a direct means of collecting and interconnecting
relocatable elements to produce a program in an executable form.
This form is called an absolute element. Optionally, the
collector can be used to create a single relocatable element
from a collection of several relocatable elements. The three
basic inputs to the collector are:

1. The parameters supplied on the @MAP control statement.

2. The information supplied by the collector directives.

3. Relocatable elements taken from various sources, such
as:

a. The temporary program file (TPF$).

29

b. User-created program files.

c. The system's relocatable library (SYS$*RLIB$).

The three basic outputs of the collector are:

1. An absolute or relocatable element.

2. A symbolic element.

3. A program listing.

The primary output of the collector is the relocatable or
absolute element which results from the collecting and linking
of the various relocatable elements. This element is given a
name and placed within a program file for subsequent use. Both
the element name and the file in which the element is placed
may be dictated by the user.

30

DATA MANAGEMENT SYSTEM

The EDIN system provides a balance of data management techniques
which consider the inherent capabilities of the computer opera-
ting system, past efforts in the storage and retrieval of
stratified data and the recent development of some flexible
paging techniques for the transfer of information between the
computer core and the mass storage of the computer. The Univac
Exec 8 system provides the resources for the storage of large
complex data files, for the storage and retrieval of the files
and for the cataloguing protection and backup of the files.
The executive system has several processors with instruction
sets for manipulating the data retained in mass storage. A
limitation on the operating system capabilities arises in access-
ing the subfile level of information in the system files once
the file is addressed.

The EDIN data management system is designed to subdivide the
files in a manner that will allow the data which is retained in
mass storage to be accessed at any level from the single para-
meter level to a large matrix of data. Rather than constructing
an extensive single computer program that attempts to be every-
thing to everyone, the EDIN data management system provides a
three-level data management capability. This approach permits
the individual designer using the system to make his own decisions
with regard to the storage method and techniques. It also per-
mits the flexibility of using existing data sources not specifi-
cally created for EDIN.

The three levels of the EDIN data management system are built
upon one another as illustrated in figure 7. The lowest level
deals with the interface between the data in mass storage and
the computer operating system. The file level of the data manage-
ment system is provided by the Exec 8 software and consists of
the file utility processor FURPUR, the file administration
processor SECURE and other system level processors. The system
processors are accessed using Exec 8 control statements. There-
fore, file level software may be used directly by the designer
for transmitting large structured blocks of data or the files
themselves to be accessed by the programmer who seeks economy
above all else. The file level constitutes the foundation for
all higher level data management components.

The second level of the EDIN data management system provides the
mechanism whereby.the files can be organized into blocks of
data called pages. Pages of information can be organized in a
number of ways and names can be given to each page. A pointer
system or directory is maintained by a Fortran callable software

31

DLG PROCESSOR
USER CONTROL

LEVEL 3 DATA BASE INTERFACE

DMAN SOFTWARE
PROGRAMMER CONTROL

LEVEL 2 DATA BASE INTERFACE
EXEC 8 OPERATING SYSTEM

LEVEL 1 DATA BASE INTERFACE

CORE DISK DRUM TAPE PRINTOUT CARD

FIGURE 7 EDIN DATA MANAGEMENT SYSTEM,,

package, called DMAN, a subroutine utility package maintained
in the EDIN library.

The third and highest level of the data management system is
provided to make the system more usable to the designer who may
not be a programmer. The capability is provided in the DLG
processor which is designed to maintain a data base of stratified
information, the stratified data can be selectively accessed
and merged with the input stream of the EDIN technology programs.
This level also provides the interactive language structure
which allows the designer to sit at a remote terminal and inter-
act with the data base directly as he develops a design. The
DLG processor also contains routines for processing the output
from the technology programs for the storage of design informa-
tion in the data base.

Although the user may access the data base through any of the
three levels, it is the lowest level maintained by the Exec 8
system which actually stores and retrieves the data. Exec 8
handles all of the underlying data management functions including
file assignments, file directories and maintenance and security
procedures as well as the data block transfer to and from mass
storage. The Exec 8 system is discussed in the previous section
and a thorough treatment of the first level data management is
provided by Univac in the appropriate User Documentation (see
figure 2). The following discussion deals with the second and
third level of the EDIN,data management system.

DMAN Software Package

The storage and retrieval of the multitude of data pages which
constitute a design data base are managed by DMAN. When a data
page is stored, it is given a page name. DMAN keeps a directory
of all the names of data pages on a file and the disk addresses
where those pages may be found on the file. This makes it possible
for a symbolic name rather than a numerical index to be used to
access a data page during its residence on the file.

DMAN provides all of the basic data management functions to handle
variable length data pages while allowing them to be referenced
by name. A data page may be stored on any file which has been
established for data base use. All or portions of a data page
contents may be retrieved. Modification of the contents of a
data page is permitted, including that which requires increasing
or decreasing the size of a page. Finally, removal of a data
page from a file may be accomplished.

33

DMAN Usage. - The DMAN data management system is a Fortran call-
able software package which has been written for access and re-
trieval of data from the EDIN data base. The package consists
of the following subroutines which must be included in the call-
ing program:

DMAN Basic Read/Write Controller.

NXTAD Extend File Routine.

UPACK7 Character Unpack Routine.

RITBF Write Routine.

PACK7 Character Packing Routine.

REDBF Read Routine.

NWBLX Create a New Block for Data.

The use requires the following declarations in the user program:

COMMON/UNITS/IAREA(273)

DATA IAREA/O,n,271*0/

INTEGER IT(5),IBUF(256)

where n is the file number where the data base is stored. The
usage is as follows:

CALL DMAN(IOP,IT,N,IDATA,IBUF,IAREA(1),IAREA(2))

IOP The read/write option. A further discussion of
these options is given later.

IT A five word array containing the data title. A
further discussion of the titles is given below.

N This variable contains the number of words in
IDATA to be read or written. When reading, and
the requested list cannot be satisfied, this
value is reset to the number of words actually
read, so this item must always be a variable
when reading data.

IDATA An integer or real array containing the data
to be stored in the data base. There is no
restriction on the length of this array.

IBUF A 256 word buffer area for use by DMAN.

34

IAREA This is a unit dependent area needed by DMAN.
It must be dimensioned 273. One IAREA is re-
quired for each unit using DMAN. The double
appearance of this array in the calling sequence
is required for interal addressing purposes.
This area must be protected, such as in COMMON,
and must be reserved for use by DMAN while this
file is being used.

A Discussion of IT. - There are two significant portions to the
five word array IT. The first three words of the title are
user supplied holler.ith words which represent the name of the
data item which is to be accessed or stored in the data base.
If this is the first access of this data in the data base, the
fourth word must be set to zero. This zeroing of the fourth
title word will also return access to the beginning of the data
set stored under the title given in the first three words.

The fourth and fifth words of the title are reserved for use
by DMAN. If the fourth word is zero, a search is made of index
arrays to find the address of the desired data set. This
address is then inserted into these two words. Each time some
activity occurs using this title, the address stored in these
two words is updated so that this address always refers to the
next word after the last word accessed. This eliminates the
need to search the index arrays for each access of the data.

A Discussion of IOP. - IOP controls the type of reading or
writing done by DMAN. The I/O options are:

IOP = 10 - write a matrix. The complete data set to
be stored under the title IT is present in IDATA.

= -10 - read a matrix.

= 20 - write a single fixed length record.

= -20 - read a single fixed length record.

= 21 - write a single variable length record. Us-
ing this type of write option, an end-of-record
mark is inserted after the end of the record. Any
variable length record read will not pass this mark
when reading. If the read is a fixed length record
read, however, this mark will be ignored.

35

= -21 - read a variable length record. In this
case, N is the number of words requested. The read
will continue until N words have been read, and end-
of-record mark is found, or the data set is exhausted,
whichever comes first. The value of N will be set
to the number of words actually returned.

= 30 - extend a data set with a fixed length record.
The data in IDATA is to be appended to the existing
data set stored under the title in IT.

= 31 - extend a data set with a variable length
record.

NOTE: If a read attempt is made, which will extend
the read past the end of the stored data set, or
the -data set requested has not been stored, the
following values will be returned by DMAN:

N=0 and IDATA(l)=3LEOD.

IOP = 6HPURGE - this option will cause the title given
in IT to be purged from the index array.

IOP = 6HCLEAR - this action will cause the buffer IBUF
to be cleared. That is output to disc if necessary.
This action is necessary before releasing the buffer
to other uses, or existing a subroutine or overlay
under conditions which will not protect the buffer.

IOP = 6HCLOSE - this action conditions the data base
so that the entire contents of the data base do
in fact reside on disc. It is necessary to execute
this statement on any catalogued data base to in-
sure that its entire contents are on disc. Normal
activity may proceed after the function is called,
and this function may be called as many times as
desired.

36

The DLG Processor

The level three (3) data management is provided by a user con-
trolled processor called DLG. The DLG processor is an
1100 series Exec 8 computer program designed to read, modify,
manipulate and replace symbolic images. DLG is controlled by
a set of user supplied directives (or language elements) which
provide the basic capabilities of the DLG processor as follows:

1. Language elements for the construction and maintenance
of a data base which is independent of any other com-
puter program.

2. Language elements for processing information generated
by other computer programs.

3. Language elements for automatically retrieving data
base information as input to any other computer pro-
gram.

4. A simple technique for editing and interrogating the
data base and for generating summary reports of data
base information.

The DLG processor can be used to form a linkage between engineer-
ing technology modules through the manipulation of common infor-
mation in the data base. The use of the system for this purpose
requires the prior assimilation of the following basic components:

1. A library of independent technology programs including
the DLG processor.

2. The control card sequences for the execution of the
technology modules.

3. The setup data for the technology modules which perform
the desired analysis function.

Thebasic components are often available without additional pro-
gram development. The program sequencing and intercommunication
required to integrate the basic components into a design simula-
tion are established using the Exec 8 run stream concept. Data
base requests for common information are established by the
formation of skeletonized data elements containing execution
control cards and/or technology module input data. The skeleton
elements are processed or filled out by the DLG processor using
data base information.

37

The procedure for implementing the linkage is to read output
data from one module, insert a selected subset of the resulting
data into a stratified data base and then selectively extract
this and other stored data for placement into the input stream
for other applications programs. The linkage is illustrated
in figure 8. The effect is to provide a unified analysis involv-
ing several modules operating from a single source of data.
Repetition of execution sequences can be triggered by looping
criteria residing in the data base.

DLG Usage

Control Statement.-

@DLG.DLG,options lfn.eltl,lfn.elt2

Option Specificdtions. -

I Source input will follow the processor card.
Source output will be placed in eltl.

L Source input data will be listed.

0 Source output data will be listed.

D Card cracking information will be listed.

E Solicitation and result of directives will be printed.

S List interrupt mode will be invoked.

M New data base files will be generated with this
execution.

B Build option will be invoked. This option specifies
that all data directives of the form:

'name name=value---

or

$name name=value---

This will permit the addition of data to the data base
regardless of the directive name. Otherwise, only
those data base variable names, which were previously
defined in the data base, will be updated unless the
data directive name is ADD or DEFINE.

The B option may not be invoked via the "ON" command.
If desired, it must be present on the processor call
card.

38

INPUTS

PROGRAM #1

COMPUTER -+ REPORTS
PROGRAM #1

I TEMP
FILE

DATA BASE

DATA DLG o 0

SKEL
PROGRAM #2 O

INPUTS

PROGRAM #2

COMPUTER REPORTS3
PROGRAM #2

AND SO ON.....

FIGURE 8 USE OF THE DLG PROCESSOR,

39

Syntax Definition. -

name Must be six (6) or less alphanumeric characters
and begin with an alphabetical character.

'(quote The DLG delimiter. Strings that occur between
or pairs of delimiters will be processed by DLG.
prime). Strings external to primes will be passed "as is"

into the output element.

- The underline on a coummand indicates an optional
character string which may be used as a directive.

value Indicates a data base value in real, integer or
hollerith format.

i,j,k Indicates integer constants used in the directives.

elt Exec 8 file element name in program file format.

Ifn Exec 8 logical file name in system data format.

text Textual information.

[] Indicates optional items on the line.

Summary of DLG Directives. - The DLG directives are summarized
below. Underlines are optional character strings. All commands
are excluded data base names.

'name' Replace name with information from the data base.

'ADD Replace specified information in the data base.

'CHANGE Change values in common IDLOG.

'COMMENT User description with null effect.
or

'CREATE Create a new data base.

'CSF or Submit executive control statement.
'ER

'DBLIST Print the names of all random access data bases
on the data base file.

40

'DEFINE Place description in data base directory.

'FORMAT Format free data base information in place.

'INSERT Insert binary SDF data in place.

'ON Mode activation.

'OFF Mode suppression.

'PRINT Print data base information.

'USE Specify a circular data base search.

'UPDATE Update a specified data base.

Descriptions of Control Directives. -

'ADD name' - Specifies that information will be added to data
base.

'ADD name=value'

'ADD name=name'

'ADD name=value,value,---'

'ADD name=name,name,---'

'ADD name=name op name, name op value,---'

+ Add

- Subtract

where op = / Divide

* Multiply

** Exponentiation

'CHANGE number=value' - Using the integer number 'number' as an
index into the master common block, IDILOG, the current value
is replaced by 'value.'

'COMMENT ' - This is a null card and is discarded by DLG.

'CREATE name,DIRLEN=number,LENDES=number,LTOTAL=number' - The data
of name 'name' is brought into existence on the data base.file.
Optional parameters are DIRLEN - the directory length (This
should be a prime number.).

LENDES - Length in computer words of the description.

41

LTOTAL - Total size, in computer words, reserved for the
data base.

'CHANGE' -

Example 'CHANGE 27=3'

Location 27 of the common block IDILOG will have its value
replaced by an integer 3.

'COMMENT' - A null card. The delimited field is removed from
the card. If the resulting card is BLANK, the card will be re-
moved from the run stream.

'CSF @ Control Statement' - Spcifies that an execution control

statement will be processed using the standard CSF$ package. The
following control statements may be used:

@ADD @CKPT @RSPAR

@ASG @FREE @RSTRT

@BRKPT @LOG @START

@CAT @MODE @SYM

@CKPAR @QUAL @USE

Example:

'CSF @USE 25, DBASE'

'CSF @ADD DUSEFIL.DLOG'

'CSF @QUAL B'

'DEFINE name=value,text' - Stores a textual description with
the name in the data base directory. If the name is a new
directory entry, the value is the number of data base entries
allotted. Existing data is unaffected and new data is not added.

'DEFINE A, LETTER 1' - Stores the description, LETTER 1,
with the name A.

'DEFINE B=10, BARRAY' - Stores the description, BARRAY,
with the variable name B and allots
10 data base entries for B.

'FORMAT name=value/value, (Fortran compatible format statement)'
Extracts freely stored data from the data base and places into
the output elements in accordance with the given format.

'FORMAT A=6/3, (1X,3Fl5.3)'

42

The six items of A are output into the named element, 3
on a line through the (lX,3Fl5.3) format.

'INSERT name=value/value' - Specifies that binary coded informa-
tion the SDF file name will be placed in the source output
element in 14A6 format.

'INSERT A' - Entire file of data in A will be transferred
to source output element.

'INSERT B=5-13' - Insert data from B from records 5 through
23.

'INSERT C=5*EOF' - Insert records from file C records 5
to the end-of-file.

Other Examples - 'INSERT A,B=5-23, C=5*EOF'

'name' - Specifies a simple replacement of named information
with data base parameters or arrays.

'REAL' Real parameter or array.

'INTEG' Integer parameter or array.

'HOLITH' Hollerith parameter or array.

'LOGICL' Logical parameter or array.

'ARRAY(j)' Real or integer element of an array, j must
be a constant greater than 1. A value of
j=l will cause the transfer of all of j.

'ON name,name---' - Mode activation directive.

'OFF name,name---' - Mode suppression directive.

P or PAGDMP Print card cracking information.

O or OUTDMP List logical file 1 data.

N or INDUMP List source output element.

C or CONTINUE Activate continuation card option.

.L or LIST List source input information.

S or SPLIT Interrupt mode.

E or EDIT Edit mode (demand response to printer).

43

'PRINT name' - Specifies that data information will be printed.

'PRINT name=A,Z' Print all information in name.

'PRINT name=n,m' Print entries n through m alphabetically.

'PRINT name' Directory and first data base entry
of named data base.

'PRINT' Directory and first data base entry of
current 'USE' assigned data bases.

'USE' -

'USE A,B,C' - The data bases named will be circularly
searched in the order given for variables used in replace-
ments. All will be searched once before a NO FIND is de-
clared. It should be noted that this command may cause
very excessive SUP changes if not carefully used.

'UPDATE name' - Specifies that the named data base will be up-
dated with the information which follows:

'UPDATE A' - Specifies that the data base A will be updated
with the data which follows.

44

Processor Interface

The processor interface is a Univac 1100 series EX8 utility
subroutine, IF, written in assembly language. IF is designed
for use by the FORTRAN programmer in the construction" of a
processor. It allows the information on the processor call
card to be made available to the user program. Two fields on
the processor call card are available to the user. The first
is the input field, and the second is the output field. The
I option implies only the first field will be used. This
field will be the output field.

Usage. - The programmer is assumed to have a minimum working

knowledge of Univac's EXEC 8 operating system and the use of
such system processors as ELT, FOR and FURPUR. There are three
entry points into the subroutine: SIREAD for reading from the
SI field, PGMOUT for writing to the SO field, and DONE for
closing the file. The calling sequences and the associated
arguments are as follows:

CALL SIREAD ($err,$eof,IMAGE,'word')

$err Statement number to be transferred to in
case of error.

$eof Statement number to be transferred to when
an end-of-file is reached.

IMAGE An array containing the image you want
written out. Normally, this is 14 words
long.

'word' This word is used to delete words from the
right, back to the left to make the image
as short as possible in order to conserve
disk space. For card images, this would
be a word of blanks: for binary informa-
tion in internal machine format, zero would
be best.

SIREAD Stands for source input read.

CALL PGMOUT ($err,$eof,IMAGE,'word')

$err Statement number of location to be trans-
ferred to in the event of an I/O error.

45

$eof A dunnmmy argument.

IMAGE The array containing the image of words
to be written out (normally dimensioned
14).

'word' As the image is compressed on disk with
the trailing null words dropped, this word
is used to fill out the image so that when
it is returned to the user, it is the full
14 words long.

PGMOUT Stands for program output.

CALL DONE ($err)

This call must be executed prior to con-
clusion of the program. It will drain any
uncompleted buffers, close and release to
their original status any attached files.
If this entry is not called prior to pro-
gram termination, the created element of
SO field will not be properly created.

Restrictions. - There are three important limitations on the
use of IF:

1. There can be only 2 fields on the processor card.

2. SI READ must be called prior to any reads from the
standard system input device, the card reader (unit
5 in FORTRAN); otherwise, read errors will occur.

3. Once the entry DONE is called, none of the entries
into IF may again be referenced (the program will
error off if this rule is violated).

46

Technology Module Interface Package

The communication of information from a technology program to
the EDIN data base generally requires modification of the
applications program. This modification is usually trivial and
requires little programming knowledge to accomplish. The objec-
tive of the modification is to create a special file of informa-
tion which contains a format suitable for reading by the DLG
processor. The information is placed on the special file by
the technology program. The file is later integrated by the DLG
for possible placement of the information into the EDIN data
base.

A series of four routines for printing the common types of data
in a format readable by DLG are available. They may be called
at any point in the calculation sequence for generating EDIN
output. The format simulates the control directives format used
in the DLG processor.

ADDREL - For printing real variables and arrays.

ADDINT - For printing integer variables and arrays.

ADDHOL - For printing Hollerith variables and arrays.

ADDLOG - For printing Logical variables and arrays.

The output is similar to the format of NAMELIST for one variable
name only with any number of associated values. Each subroutine
has the same calling sequence characterized as follows:

CALL ADDREL (LU, NAME, NUM, VALUE)

LU - Logical unit or special output file.

NAME - Desired name chosen by the analyst/programmer.
It may be a stored name set by a Fortran data
statement or can be set in the calling sequence
as nHname.

NUM - Number of values in the array. For a single
variable NUM=1.

VALUE - Internal variable or array name (starting
location).

The subroutines for the other variable types have the same calling
sequence. The primary difference among them is the format used
for writing the variables and the special output file. Each
output is a DLG control directive format. The name associated
with the directive is set by a data statement in the individual
subroutines. The data statement may be set at the time the

47

technology program is modified. Usually it is desirable to use
a name which is reminiscent of the application program name.
The selected name may be precisely the same as the acronym used
to execute the application program in EDIN. The reason for
such a choice is that the directive name is stored in the EDIN
data base. A print of the data base prints the last directive
which updated each variable in the data base.

For most technology programs, the use of the software described
above is adequate. However, certain programs generate data
base information in a Fortran "DO LOOP." In these instances,
the package (by itself) can not satisfy the EDIN requirement
of separate names for different data elements and arrays.

The most convenient way to make this program and others of
this type compatible with EDIN is to provide some name-genera-
ting capability*with the applications program. Function sub-
routines which provide this capability can be called as
illustrated below:

NAMGEN (NAME, K, J)

NAME = The desired root name.

I = Concatenated number occupying the first one or
two BCD character positions beyond the root
name.

J = Concatenated number occupying the second one
or two BCD character positions beyond the root
name.

An example would be:

NAM=NAMGEN (4HNAME,1,2)

In the above illustration, the name NAME would be extended
by the BCD characters 1 and 2 concatenated to it and stored
in NAM.

NAM=6HNAME12

A maximum of 6 characters may be generated. This limit is
imposed by the word size limit for EDIN data base names.

Usually the NAMGEN function is used in conjunction with the
NAMELIST simulator described above in the following manner:

48

CALL ADDREL(LU,NAMGEN(NAME,I,J),NUM,VALUE)

In the illustration, the name is generated within the
calling sequence of the subroutine which prints the simu-
lated namelist for the generated name.

49

PROGRAM LIBRARY

The following sections describe the current EDIN program library.
The independent program elements, which form the library, are
resident on the Exec 8 system or are readily available for
incorporation should they be required. Many of the programs
are nationally recognized, references 17 through 30. Others
were specifically developed for the EDIN system.

The library is arranged according to the specific groups of
application's software. These groups are defined in the follow-
ing paragraphs. In addition, a series of abstracts are provided
on the software programs available to the EDIN system.

Geometry

The geometry applications software is a collection of special-
ized geometry generators. Software which generates geometry
or uses formatted geometry as an input is included in this
classification. The following list of geometry application
software and descriptions are available in the EDIN library.

AIRFOIL: A Program for Generating Geometric and Aerodynamic
Characteristics of Airfoil Sections.

GEOMETRY: Body Coordinate Generator.

PANEL: A Program for Generating Panelled Configuration
Geometry.

VAMP: Volume, Area and Mass Properties.

WETED: Wetted Area and Reference Length Program.

SFIT: A Surface Fitting Program which Generates Surfaces
over Cross-Sectional Definitions. The Surfaces
Generated are Defined by Cornerpoint Geometry.

AIRCFT: Program to Generate Aircraft Type Configuration
Geometry.

GTM: Geometry Technology Module for Generation, Mani-
pulation and Display of Cornerpoint Geometry.

Aerodynamics, Stability and Control

The Aerodynamics, Stability and Control applications software
are those programs which perform configuration design analysis
for predicting stability and control derivatives and aerodynamic

50

properties through various flight regimes. These programs and
program descriptions are summarized as follows:

AIRFOIL: A Program for Generating Geometric and Aero-
dynamic Characteristics of Airfoil Sections.

DATCOM: Configuration Design Analysis Program (TRW).

DATCOM2: Configuration Design Analysis Program (MDAC).

HABACP: Hypersonic Arbitrary Body Aerodynamic Computer
Program.

SKINF: Turbulance Skin Friction Drag Program.

TOLAND: High Lift Aerodynamics Prediction.

TREND: Subsonic/Supersonic/Hypersonic Aerodynamic
Tradeoff Program.

WDRAG: Zero-Lift Wave Drag Program.

WETTED: Wetted Area and Reference Length Program.

Propulsion

The propulsion applications software would include those pro-
grams which are used for rocket engine sizing, thrust chamber
design, turboramjet engine design and inlet design. These
programs are summarized as follows:

ENCYCL: Design Point Performance of Turbojet and Turbofan
Engine.

LREN: Liquid Rocket Engine Model.

Mass and Volumetric Properties

The Mass and Volumetric Properties applications software include
those programs which perform weights trend analysis, volume and
mass properties evaluations and sizing. These programs are
summarized as follows:

ASPE: Weights Trend Analysis for Multiple Stage Vehicles.

CASPER: Reusable Booster/Orbiter Sizing.

CAWATA: Cost and Weight Analysis of Transport Aircraft.

ESPER: Weights Analysis for Shuttle Class Vehicle.

SSSP: Space Shuttle Synthesis Program.

VAMP: Volume, Area and Mass Properties using Harris
Geometry.

VSAC: Vehicle Synthesis for High Speed Aircraft.

51

WAATS: Weights Analysis for Advanced Transportation
Systems.

TANK: A Program for Generating Fuel and Oxidizer Tank
Design Characteristics such as Volume, Wall
Thickness and Weight. Cornerpoint Geometry is
Generated for Display Purposes.

SIZER: A Preliminary Booster Sizing Program Based upon
Ideal Velocity and Mass Ratio Relationships.

WAB: A Program that Computes Volume, Area and Mass
Properties from any Combination of Gentry.
Geometry and Black Box Inputs.

Performance

The performance applications software includes programs which
perform trajectory optimization and analysis and design synthesis.
These programs are summarized as follows:

GEMASS: Three Degree/Six Degree of Freedom Motion
Analysis Program.

PADS: Performance Analysis and Design Synthesis Program.

POST: A Program to Optimize Simulated Trajectories.

PRESTO: Program for Rapid Earth-to-Space Trajectory
Optimization.

ROBOT: Three Degree of Freedom Launch Optimization
Program.

SSFS: Space Shuttle Functional Simulator.

SVDS: Eighteen Degree of Freedom Multiple Vehicle
Motion Analysis.

TOLAND: Takeoff and Landing Program.

VSAC: Vehicle Synthesis for High Speed Aircraft.

Thermodynamics

The following application software is available for thermodynamic
evaluations and analysis:

HABACP: Hypersonic Arbitrary Body Aerodynamic Computer
Program.

TREND: Subsonic/Supersonic/Hypersonic Aerodynamic
Tradeoff Program.

52

Structures

The structures application software includes those programs
which perform structural analysis and structural optimization
of vehicles. These programs are summarized as follows:

AFSP: Automated Flutter Solution Procedure.

ASOP: Automated Structural Optimization Program.

BOSOR: Buckling of Shells of Revolution.

CALBAR: Buckling Loads/Cylinder Shells.

SSAM: Swept Strip Aeroelastic Model.

STAGS: Structural Analysis of General Shells.

Cost

The following application software is available for performing
cost analysis:

CAWATA: Cost and Weight Analysis of Transport Aircraft.

DAPCA: Development and Production Cost of Aircraft.

PRICE: A Program for Improved Cost Estimation.

Environmental Protection

The following application software is available for predicting
environmental protection requirements and environmental flight
evaluations.

SBOOM: Program to Predict Ground Level Overpressure from
the Over-Flight of Shuttle Type Vehicles.

General and Special Purpose Utilities

The following general and special purpose utility software
are available:

PLOTTR: A General Purpose Plotter Program which Outputs
to Tektronix, CALCOMP, SD4060, MOPS.

CIPHER: A Report Generation Program.

AESOP: Automated Engineering and Scientific Optimiza-
tion Program.

53

DLG: Data Processor for Linking Independent Computer
Programs and Providing Data Intercommunication.

HDG: Heading Program.

MAC: Macro-Processor.

IMAGE: A Program for Displaying Three Dimensional
Geometric Configurations on Tektronix, CALCOMP,
SD4060, MOPS, Etc. This Program Can Perform
Rotations, Translations and Zooming.

VL70: Program to Interrogate Standard Aero Tape Data.

PROFIL: Program to Interrogate Trajectory Data Tapes.

The following is a collection of abstracts on the applications
software available to the EDIN system:

ABLATOR: One Dimensional Analysis of the Transient
Response of Thermal Protection Systems.

The program assumes that thermal properties in the given layer ofmaterial are functions only of temperature, that all heat flow is
normal to the surface, and that gases transpiring to the char
layer are the same temperature as the char. The outer surface issubjected to the aerodynamic heating and the char layer provides
both; installation and high temperature outer surface for reradia-
tion'. The heat passing through the layer is partially observed
by pirolysis at the interface between the char layer and the un-
chared material. The remaining heat is conducted into the unchar-
ed layer. The gases generated through the char layer are injected
into the boundary layer. The gases are heated as they pass
through the char and this heat removal from the char layer induces
the quantity of heat conducted by the pirolysis interface. When
these gases are injected into the boundary layer, the conducted
heat transfers are induced. The program accepts as input the
temperature at the surface of the model and generates a time his-
tory of the thermal condition of the various layers as the vehicle
enters the atmosphere.

ACMOTAN: Linear Aircraft Motion Analysis

The program is a versatile code for linear aircraft motion
analysis which allows the user to supplement the standard air-
plane equations of motion with auxiliary equations written bythe user to represent control laws or additional variables. The
program prepares the system of linear differential equations us-ing several optional forms of input data and then carries the
solution to an extent determined by the output option selected.
Minimum output includes the characteristic polynominal and .its
roots. Additional output in the form of transfer functions,
frequently responses and time histories can be selected.

54

AESOP: Automated Engineering and
Scientific Optimization Program.

AESOP is a multiple variable optimization program designed for
the solution of a wide range of parameter optimization problems.
The basic program has the ability to solve constrained optimiza-
tion problems involving up to 100 parameters and up to 20 con-
straints. Thirteen search techniques are available for use
individually or in combination to solve the desired problem.
The hMethods include sectioning, steepest descent, quadrilateral
search, Davidon's method, random ray search, pattern and several
others. The program is designed to be linked with other programs
to perform internal optimization or can be used as an independent
program for optimizing systems of programs.

AFSP: Automated Flutter Solution Procedure

Program AFSP is based upon a new method of solving the flutter
equation. The method is based upon the premise that the flutter
analysis, due to the particular form in which the aerodynamic
forces are available, essentially consists of a search for those
V-values and w-values which render the flutter determinate zero.
The procedure deviates essentially from the V-g analysis in so
far that the eigenvalue calculation is replaced by simplier
algorithm leading to the decomposition or tue fiutter matrix.
The actual search. for the flutter solution involves a single real
and positive function of the two variables V and w rather than
the (n) complex functions representing the eigenvalues in the V-g
analysis. The flight altitude, Mach number and flight speed re-
main consistent throughout the search whereas the V-g analysis
starts out from given values at altitude and Mach number. The
flutter speed only follows as a result of the calculation. In
general, the speed will not be consistent with the input data
such that many runs are required to iterate toward a solution.

AIRFOIL: A Program for Generating Geometric and Aero-
dynamic Characteristics of Airfoil Sections.

The computer program is written to provide airfoil coordinates
incompressible inviscid section characteristics and two-dimension-
al drag-rise Mach numbers for a large number of National Advisory
Committee for Aeronautics (NACA) designated airfoils from a simple
one card input. The program is actually a combination of two
separate programs. One program gives the airfoil surface coordi-
nates with only the NACA airfoil designation as input, and the
other uses the surface coordinates to predict incompressible,
inviscid pressure distributionfrom which the section character-
istics and drag-rise Mach number are determined.

55

ATOPII: Atmospheric Trajectoiry Optimization

The program is a generalized steepest descent computer program

set up to handle the three-dimensional, point mass, vehicle flight

path trajectory optimization problem. It is capable of simu-

ltaneously handling up to fifteen state variables, six control

variables and ten constraints. Most of the usual functions re-

quired in flight path studies are available within the program;
others may be added as desired by simple program additions, pro-

viding the function or its derivative is defined analytically.

The program may be readily extended to cover steepest descent

optimization problems in other fields, by the replacement of the

basic differential equation subroutine by any other set of equa--

tions of the same general type. Convergence to the optimal

solution is obtained automatically by means of one of two control

systems which, by a series of logical decisions, obtain a reason-

able perturbation magnitude at each iteration.

COAP: Combat Optimization and Analysis Program.

The program is an extension of the ATOP II (Atmospheric Trajectory

Optimization Program). It uses two complete three dimensional

equations of motion sets to simulate a one-on-one
combative en-

counter between two flight vehicles. The aerodynamic and pro-

pulsion representation are sufficiently general to
permit the

simulation of both current and proposed vehicles by input data.

Generalized rotating planetary and atmospheric models permit

stimulation of either aircraft, missiles or spacecraft encounters.

Combat roles for each vehicle (attacker, defender, etc.) are
automatically defined on the basis of vehicle relative positions,
heading and velocities. Depending upon the vehicle role selected,

any one of the set of tactics designed to satisfy the role re-

quirement is executed. The tactics vary in nature from straight

forward stylized maneuvers such as split-S to barrel role, to

three-dimensional lag or lead pursuit path. Combat optimization

capability may be introduced by repetitive simulation using para-

meterization of the combat guidance parameters and the applica-

tion of multivariable search techniques. Alternately, the
variational calculus may be employed to define optimal continuous
control against a reacting opponent. In the parameter optimiza-
tion mode, the option to determine a mini-max solution is also

available.

56

oIGI t4J PAGE PWS
~gv QIJALI3I,,

CONPLOT: Aircraft Configuration Plot.

This program generates the necessary instructions for automati-
cally plotting of a numerical model of an aircraft configuration.
Program options may be used to draw three-view and oblique ortho--
graphic projections as well as perspective drawings of an aircraft.
These plots are useful in checking the accuracy of the numerical
model data. Magnetic tape output from this program has been used

DAPCA: Development and Production Cost of Aircraft.

The DAPCA program computes development and production costs of
major subsystem of fly away aircraft (airframe, engines, etc.).
The cost input data is simple and generally relates to aircraft
and "ngine performance characteristics such as gross takeoff
weight, speed engine type thrust, etc. The actual cost equations
are the power law types with built-in cost coefficient and using
user supplied parameters.

DATCOM: Configuration Design Analysis Program (TRW).

The program computes aerodynamic coefficients for aircraft/space-
craft configurations in the subsonic/transonic/supersonic regimes.
Analytical techniques in the program are based on those of USAF
stability and control handbook, DATCOM, revision September, 1970.
The program comprises four modules which compute lift, pitch, side-
slip and control characteristics respectively. Modular construc-
tion enables other sets of aerodynamic characteristics to be
incorporated into the program.

DATCOM2: Configuration Design Analysis Program (MDAC).

The program calculates the statics stability characteristics of
wings, bodies, wing-body, tail-body and wing-body-tail coimbina-
tions at angle of attack and slide slip throucgh the Mach range
from subsonic to supersonic speeds. Whenever appropriate DATCOM
methods are available, the program computes longitudinal deriva-
tives CL and CM , longitudinal coefficient CD, CL' Cm and side

a m
slip derivates C , CL and Cn. Output for configurations of

horizontal tails also include downwash and dynamic pressure values.
All intermediate variable calculations are also available for
output.

57

ENCYCL: Design Point Performance of Turbo-
jet and Turbofan Engine.

ENCYCL computes the design point performance of turbojet and
turbofan engine cycles from user supplied engine characteristics
and flight conditions. The program input requires the airplane
Mach number, the altitude, the state coin-ditions, turbine inlet
temperature, afterburner temperature, duct burner temperature,
bypass ratio, coolant flow, component efficiencies and component
pressure ratios. The outout vields specific thrust and soecific
fuel consumption, engine efficiencies and several component
temperatures and pressures. The thermodynamic properties of the
Qas are expressed as functions of the tempnerature and fuel to
air ratio.

GENENG: A Program for Calculating Design
and Off-Design Performance for
Turbojet and Turbofan Engines.

The program calculates steady state design and off-design perfor-
mance for one and two spool turbojet engines. The original ver-
sion of the GENENG program entitled, "Simulation of Turbofan
Engines" was developed by the Turboengine Division of the Air
Force Acro Propulsion Laboratory, Wright Patterson Air Force Base,
Ohio. The program uses steady state gas dynamics to compute the
engine design conditions. Off-design performance is based on
specific component performance maps which must be provided by
the user.

GENENGII: A Program for Calculating Design and
Off-Design Performance of Two and Three
Spool Turbofans with as many as Three
Nozzles.

The GENENGII program is a derivative of GENENG (Generalized Eng-
ine Program). GENENG is capable of calculating steady state de-
sign and off-design performance of turbofan and turbojet engines
were evolved from SM OTE (Simulation of Turbofan Engine) which
.was developed by the Turbo Engine Division of the Air Force Aero
Propulsion Laboratory of Wriaht Patterson Air Force Base, Ohio.
GENENGII calculates design and off-design engine performance for
existing or theoretical fan engines with two or three spools and
with one, two or three nozzles. In addition, fan performance
can also be calculated. Nine basic turbofan engines can be cal-
culated without any programming changes. Included among the nineare three types which are likely candidates for STOL aircraft with
internally blown flaps. Many other possibilities exist which aretoo numerous to mention, being determined by the users knowledge
of the program itself.

ORIGINAL PAGli 8
OF POOR QUALIT

GEOMETRY: Body Coordinate Generator.

The program generates trapezoidal and elliptical body coordinates
in a format suitable for use in VAMP, WETTED, DRAG and CONPLOT.
The forbody coordinates are generated according to a "minimum
drag" area distribution while the afterbody coordinates are con-
stant in cross sectional area.

HABACP: Hypersonic Arbitrary Body
Aerodynamic Computer Program.

The program treats the vehicle surface as a collection of quadri-
lateral elements oriented tangential to the local vehicle surrace.
Each individual panel may have its local pressure coefficient

specified by any of a variety of pressure calculation methods,
including modified Newtonian, blunt body, Ne wtonian-Prandtl-Meyer,
tangent-wedge, tangent-cone, boundary layer induced pressures,
free molecular flow and a number of empirical relationships.
Viscous forces may also be calculated, which include viscous--in-

viscid interaction effects. Skin friction options include the

reference temperature and referenced enthalpy methods for both
laminar and turbulent flow, the Spalding-Chi method and a special
blunt body skin friction method. Control surface deflection
pressures including separation effects that may be caused by the
deflected surface are also calculated. Several other options are
available including the calculation of dynamic derivatives, the
qeneration of geometry and plotting.

HDG: Heading Program.

HEADING is a control card callable program which prints user

specified heading information in large characters. The characters
of the heading are formed by the pattern of characters which form
the character itself. The letters of the heading are eight
characters wide and ten characters high. Input to the program
is placed on the heading execution card.

59

IMAGE: Configuration Display Program.

The IMAGE program uses a surface definition based on quadrilateral
elements to describe picture-like drawings of arbitrary configura-
tions. The program is used for visual check on geometric input
data, monitoring of geometric perturbations and providing reports
on geometric characteristics. Geometric characteristics may be
input or taken from a data base of configuration data. The user
describes the viewing angles, position and scaling factors as well
as textual information through the input procedure. The configura-
tion drawings are generated on a plot vector file which is suit-.
able for processing by various display devices.

MINIVER: Aerodynamic HIeating Program.

The program is a "miniature version" of the McDonnell Douglas
Corporation Aerodynamic Heating Program for use on the CDC 6600.
It calculates radiation equilibrium temperature and provides
thin-skin temperature response for input materials. (Aluminium
titanium, Rene 41 and inconel X-750 properties are' built in.)
Heat transfer methods are available including Fay and Rydell,
Erkart Reference Enthalpy, Spaulding and Chi, Flat Plate Rho-Mu
product, three swept cylinder theories and Lees-Detra and H-idalgo
for hemispheric nose caps. The program also includes the capa-
bility of traversing three sequential shocks, shape-edge and cone
plus oblique shock of availability, sharp-edge and cone modifiec
Newtonian and swept cylinder stagnation line pressure solution.

PADS: Performance Analysis and
Design Synthesis Prcgram.

The Performance Analysis and Design Synthesis (PADS) computer
program has a two-fold purpose. It can size launch vehicles in
conjunction with calculus of variations optimal trajectories and
can also be used as a general purpose branched trajectory o ptm-
zation program. In the former case, it has the Space Shuttle
Synthesis Program as \:well as a simplified stage weight module
for optimally sizing manned recoverable launch vehicles. For

jecr.ory moulies. inhe first trajectory module uses the method
of steepest descent, the second employs the method of quasilinear-
ization, which requires a starting solution from the first
trajectory module.

PANEL: A Program for Generating Panelled
Configuration Geometry.

The PANLL program is a general purpose external geometry defini-
tion program developed primarily for use in large scale simulations
of the preliminary design process. It is an independently opera-
ted program which produces a sequence of quadrilateral panels
defined by the corner ipoints. The .rosulting data is acceptable
as input to colputer programs in ot:her technical disciplines such
as acrodynamics, structures and thermodynamics.

6 o ORIGINAL PAGEN
OF POOR QUAL"T

The program accepts as input a variety of formats from detailed
definition of individual panels to selection of generalized two-
and-three dimension'al shapes. The section data includes circular
and elliptical as well as arbitrary cross sections. A cubic patch

technique is included which allows broad sections of the vehicle
to be described with a relatively small amount of input. The in-
put data can be mathematically fitted with end matched cubic

functions and reduced to distributed panels.

PLTVIEW: Program for Generating
Separation Plots.

The program is a companion to the SEPARTE program which computes

the separation distance and attitude of two stages of the shuttle

vehicle during staging. PLTVIEW generates plots of separation

distance and vehicle orientation for the separating vehicle com-

ponents. The input data is obtained from the time history data

generated by the SEPARTE program. The output is a GERBER plot of

the separation distance and orientation.

POST: A Program to Optimize
Simulated Trajectories.

The POST program is a generalized point mass discrete parameter

targeting an optimization program. POST provides the capability

to target and optimize point mass trajectories for a powered or

unpowered vehicle near an arbitrary rotating oblate planet. POST

has been successfuily used in solving a wide vaniety of atmospher-
ic ascent and re-entry problems as well as exoatmospheric orbital
transfer problems. The generality of the program is evidenced by
its N-phase simulation capability which features generalized plan-
et and vehicle models. This flexible simulation capability is
augmented by an efficient, discrete parameter optimization capa-
bility which includes equality and inequality constraints.

RDPRO: POST Plot Data
Generation Program.

The program interrogates the output data tape from the POST pro-
gram' and generates specified plot information pertaining to time
histories of various performance and constraint functions avail-
able after the execution of the POST program. The prograrm is
designed specifically as an interface program for analysis of
trajectory data from the POST program.

61

ORIGINAL PAGE 3'
OF POOR QUAUTI

PRESTO: Program for Rapid Earth-to-
Space Trajectory Optimization.

The PRESTO program uses a closed loop deepest descent optimiza-
tion procedure to derive flight trajectories to produce maximum
booster payloads for a variety of space missions. Trajectories

rotating earth. Four powered stages and tliree upper stage thrust
cycles can be accommodated. Coast periods are permitted between
each stage. Aerodynamic lift and drag forces are included in
the computation. The optimization routine simultaneously con-
sidered the launch direction and time the interstage coast dura-
tions-and the upper stage thrust sequencing, the complete pitch
and yaw attitude histories and terminal constraints. Immtediate
constraints may be introduced on angle attacks, coast orbit
perigee altitude or on the product on angle attack and dynamic
pressure. The closed loop procedure greatly facilitates the
satisfaction of terminal constraints and reduces the number of
iterations required to achieve convergence.

PRICE: A Program for Improved Cost Estimation.

The PRICE computer program was developed in order to rapidly
generate preliminary estimates of total program costs for mission
studies of V-STOL and conventional transport aircraft, hypersonic
aircraft and reusable space transportation system. The program
uses cost estimating rela-Lionships based on historical cost data
for conventional and advanced aircraft, spacecraft and launch

vehicles. Th e ,proeach n rr1 "l ::.' cs .-
meters such as weight and thrust, then adjusting the results
with complexity factors to account for differences in material
and type of construction, performance level, etc.

REPORT: Report Generator.

REPORT is a executive program (DLG) option which allows the
user to interrogate the data base and format engineering reports.

Descriptive information may be provided in any format with de-

limited data base names inserted w'here datD-.: base requests are

desired. The report is automatically printed with descriptive
information printed exactly as originally specified and delimited

data base names replaced by the corresponding data base informa-

62

SBOOM: Sonic Boom Prediction for
Shuttle Type Vehicles.

The SBOOM program is based on the prediction technique of Thomas
(references). The prediction technique calculates the far-field
overpressure from the near-field pressure signatures measured in
the ..n . .nn e . re s.lt n. .. ra..... cr Ir . . in4

a data base aid acessedU by Lhe compuLter puroram fo-r i-.terpola-

tion/extrapolation based on geometric similarity of the pressure
signatures. Wind tunnel data in the data base was generated for
space shuttle type configurations. The approach used. in determin-
ing ground overpressure is to describe the wave form of the sonic
boom wave by several wave form parameters and then obtaining equa-
tions for the parameters as function time. This approach has the
advantage of being simple and providing a convenient method for
extrapolating experimental signatures because the signatures are
dealt with directly. The input consists of the vehicle con-
ditions and the environment in which the vehicle is operating as
a basic condition operating the program. Many flight conditions
can be equated through the normal input channels or the program
will accept flight condition data from trajectory .generation pro-
grams stored on an auxiliary file.

iSEPARTE: The Program to Simulate Separa-
ting Stages of Launch Vehicles.

The program is a twelve-degree-of-freedom separation program for
studying space shuttle separation problems. Each stage of the
separating vehicle is represented by six degrees of freedom.
Aerodynamic data governing the motion of the separating vehicle

is staged into the program from a storage file because of the
large bulk of data. The program generates Gerber plots of the
separating vehicle components at specified time intervals.
Separating components are represented by simplified geometric
shapes.

SKINF: Turbulance Skin Friction Drag Program.

The program computes the skin friction drag of a vehicle including
the effects of distributed roughness and temperature of the sur-
faces at arbitrary combinations of Mach number and altitude.
Calculations can be made using either the standard day or the +10
degrees hot day atmospheres. Input consists of flight conditions
(Mach-altitude) ,;the wetted areas, reference length and form fac-
tors for all of the components of the aircraft in the mean rough-
ness height and emittance of the surfaces. Wetted areas in
reference lengths may be obtained from the program WETED.

63

C)IGr; P AI4ar

SSAM: Swept Strip Aeroelastic Model.

The program performs an aeroelastic evaluation of the wing span-
wise flight load analysis includina the complete aj.rcraft balance
for a specified set of steady state maneuvers and/or design lift

r t- ri r- n n~ qcr Ir~c~r l r n 1,Ci f +-r i ia-ir- YrT-V\rAT :--rr *4h-

compute the required balance tail load which is reflected in the
wing load calculation. The flight loads, including the aero-
dynamic and.wing dead weight loads, are converted into structural
wing box bending and torsion loads to evaluate the resulting
bending and torsional stresses If the calculated wing stress
exceeds the allowable wing stresses, a new set of values of wing
section stiffness values are selected to match the allowable
stress distribution specified within the program data. The wing
aeroelastic load solution is then repeated until the calculated
and allowable wing stresses are matched. The cycling process is
fast and usually requires three to five cycles to converge depend-

.ing upon the error margin set within the program. The final
calculation is the wing box weight based on the final set of El
and GJ values obtained. The analysis is limited to subsonic
flight conditions.

SSSP: Space Shuttle Synthesis Program.

The program automates the trajectory weights and performance com-
putation essential to predesign of the space shuttle system for
earth-to-orbit operation. The two-stage space shuttle system is
a completely reusable space transportation system, consisting of
a booster and an orbiter element. The SSSP major subprograms are
detailed weights/volume routine, a precision three dimensional
trajectory simulation and the iteration and synthesis logic neces-
sary to satisfy the hardware and trajectory constraints. Three
versions of SSSP are available representing some early space
shuttle concepts in the predesign stage of the shuttle project.

TOLAND: Take-Off and Landing Piogram.

The program was constructed by NASA's Advanced Concepts and Mis-
sion Division, OAPT. The program provides simplified high lift
aerodynamics based on DATCOM methods, a ground roll analysis,
rotation logic and clintout to clear a fifty-foot obstacle.
Angle-of-att-ack in the ground run and rotation maneuvers are
determined from the vehicle geometry which is input to the pro-
gram.

64

TOP: Trajectory Optimization Program.

A steepest-ascent optimization program has been developed which
is capable of optimizing the flight path of a wide class of
vehicles. The program will optimize rockets, air-augmented
rockets, ramjets, scramjets, turbojets and glide vehicles.
Unique features are incorporated which allow extension. of
optimization procedures into the airbreathing propulsion field,
particuiarly to supersonic transport type vehicles.

The body pitch angle is used for in-plane trajectory shaping in
place of the usual angle-of-attack control variable. Additional.
control variables include bank angle, engine throttling and a
variable geometry control variable for vehicles with variable
sweep wings, drag brakes, etc. Enroute placards are available
to allow optimization within realistic constraints, such as con-
trol limits, structural loads, engine operating limits, manned
vehicle requirements and geopolitical limitations such as sonic
boom.

The optimization is accomplished with an automatic step-size
controller and with automatic control variable weighting matrices
to allow problem solution in a single.computer run. Automatic
plotting capability is included. Multistaged vehicles and pro-
blems involving variable initial conditions may be optimized. A
variable step Runge-Kutta integrator performs the derivative
evaluations.

TOPLOT: Plot Generator for TOP.

This program interrogates the output file from TOP (Boeing Tra-
jectory Optimization Program) and generates time history plots
of various performance and constraints functions generated during
a top run. The output is placed on temporary disk and can be
transferred to a physical tape for plotting using the PLOTSV pro-
cedure.

TREND: Subsonic/Supersonic/Hypersonic
Aerodynamic Trade-Off Program.

The program provides rapid aerodynamic lift, drag and moment
estimates and the subsonic, supersonic and hypersonic lift
regimes. It is primarily designed to estimate high lift/drag
re-entry vehicle aerodynamic characteristic, but the class of
vehicles which may be analyzed by the program is of greater range
than the primary class of vehicle. Some program modification may
be required if the extension is too great. The program may be
used for generating basic aerodynamic coefficients or it may be
used for trending from known aerodynamic characteristics based on
theoretical changes in the geometry. In the hypersonic flight
regime, the program contains an optional aerodynamic heating com-
putation capability. The program does not possess a transconic
a--ocnvnaimic c 3harac-h-ri.li c . i t.-i O7 I C. i 1h i 6i-v.

65

VAMP: Volume, Area and Mass Properties.

The VAMP computer program calculates the mass properties, c.g.
location, enclosed volume, wetted area and planform area of any
closed structure that has a plane of symmetry. The vehicle is
described to the computer program by ordered sets of X, Y, Z
coordinates of points on its surface. The X, Y, Z coordinates
are converted to quadrilateral elements for analysis. The mass
properties of each quadrilateral may be computed from a thickness
and density input for each quadrilateral or from a weight per
unit area input at each point or from a combination of both.

The computed mass property totals may contain not only the con-
tribution from the distributed mass on the vehicle surface wall,
but additional masses may be added as "black boxes" by specifying
each one's c.g. location and mass properties.

Program VAMP can also produce picture-like images of the vehicle
or individual sections from the quadrilateral element data. This
facilitates checking the input and visualizing and/or modified
configurations. Orthographic, perspective and stero views may
be obtained.

VSAC: Vehicle Synthesis for
High Speed Aircraft.

The VSAC program was developed for use in preliminary sizing
studies of high speed flight vehicles. Single-stage aircraft
with! either takeoff and landing capability or airborne start,
and. two-stage vehicles consisting of an aircraft with an expend-
able, rocket-propelled booster can be sized. The single-stage
aircraft are capable of either rocket or airbreathing propulsion
and flight speeds to Mach 6. Two-stage configurations cover
flight regimes to Mach 15, although no supersonic-combustion
engines were considered.

Mission modeling is provided in a modular fashion to allow the
program user maximum flexibility, and to allow improvement or
substitution of subroutines as new studies may require. Analytic
performance equations and numerical trajectory integration are
provided, together with appropriate iteration routines.

The primary aerodynamics method is a component buildup procedure
that requires the user to input only a geometrical description of
the external vehicle characteristics and generates curve-fit
expressions for the lift and drag coefficients. Stability and
control are not considered.

66

ORIGINAL PAG~Eo2oDh ALL

WAATS: Weights Analysis for
Advanced Transportation Systems.

WAATS is a weights analysis program which uses the component
buildup technique for weight estimation. Each component weight
is based on the weight of the same component of similar vehicles
that have actually been built or at least designed in great de-
tail. The similarity law that gives the best correlation for
most subsystems has been shown to be the power law formula:

by = ax

The program logic assumes the propellant weight and physical
characteristics are known. It performs the weight estimations
with user supplied correlation parameters (a and b), estimated
gross weight and estimated landing weight. An internal iteration
loop cycles through the equations until convergence on weight is
achieved.

WDRAG: Zero-Lift Wave Drag Program.

The program calculates the zero-lift wave drag at supersonic
speeds for airplanes having arbitrary combinations of fuselage,
wing!, nacelle, horizontal fins and vertical tail. The input
geometry description is in the format of CONPLOT and WvETTED
Sprograms. The program may also be used to calculate (for any
desired Mach nuJmber) the fuselage area distributions that are
required for a minimum wave drag. Simplified fuselage con-
straints may be included for the above calculation. The fuse--
lage may be cambered and may have arbitrary cross-sectional
shapes. The wing may be twisted and cambered. The theoretical
approach is based on the far-field linear theory that considered
the relationship between the forces on the airplane and the
momentum transported through the boundaries of a control surface
completely surrounding the airplane.

WETTED: Wetted Area in Reference Length Program.

Thi q prngram cornpute the surface wetted area and reference
langthl for a = al cpnns of a 14 igatio b-sed c- cor

4
ner-

point geometry inputs to the program. The configuration may be
arbitrarially divided into components on the fuselage and all
aerodynamic surfaces. The wing may be divided into many stream-
wise panels in order to approximate a strip integration for skin
friction calculations. Input to the program is identical to
CONPLOT. Output is suitable for use in the SKINF program.

67

LIBRARY ADDITIONS AND MODIFICATIONS

During the contract period a number of new programs were
developed. In addition, several existing programs were modi-
fied for incorporation into the EDIN system. These additions
and modifications dealt with the EDIN executive, geometry,
graphics and general utilities software. Figure 9 summarizes
some of the EDIN software which was developed or modified for
the EDIN system.

The following sections provide a description of the newly
developed or modified software. The description includes a
program description, physical characteristics of the software
and program usage requirements containing descriptions on the
control cards necessary to execute program input and output.
Among the many programs which were developed or modified during
the contract period, only those which appeared to have been
major developments are described in the following sections.

68

NEW PROGRAMS OR PROGRAMS WITH MAJOR MODIFICATIONS

EXECUTIVE

DLG DATA MANAGEMENT PROGRAM.
DATA BASE NAME ORIENTED DATA BASE.

GEOMETRY

GTM GEOMETRY TECHNOLOGY MODULE.
PANEL PROGRAM FOR PANELLING AEROSPACE VEHICLES.

SFIT THREE-DIMENSIONAL SURFACE FIT.

GRAPHICS

PLOTTR INDEPENDENT PLOT PROGRAM.
IMAGE PICTURE DRAWING PROGRAM.
CIPHER REPORT WRITING PROGRAM.

UTILITIES TECHNOLOGY MODULETTES.

TANK FULL AND OXIDIZER TANK DESIGN PROGRAM.
SIZER STAGE SIZING FOR MULTISTAGED VEHICLE.
VL70 READ AND INTERPOLATE DATA FROM SHUTTLE

AERO DATA TAPE.
RDPRO READS TRAJECTORY DATA TAPE.
WAB WEIGHT AND BALANCE PROGRAM.
HDG HEADING PROGRAM.

FORTRAN CALLABLE INTERFACE SOFTWARE

IF EXEC 8 PROCESSOR INTERFACE:

DMAN EDIN DATA BASE INTERFACE.
(DIRECT STORAGE AND RETRIEVAL)

ADD --- EDIN DATA BASE INTERFACE
(STORAGE WILL BE THROUGH DLG)

IF. EXEC 8 PROCESSOR INTERFACE
(COMMUNICATION WITH FILE ELEMENTS)

FIGURE 9 NEW OR MODIFIED SOFTWARE DEVELOPMENTS,

69

AIRFOIL: AIRFOIL GENERATION PROGRAM

The AIRFOIL Program has been modified to write a file of data
in BCD format suited for the GTM to read. See reference 33 for
GTM input requirements. The modification to AIRFOIL is in the
form of a new subroutine, GAMOUT, which is called from the main
program, FOIL. This subroutine writes a file of data on unit
4 as illustrated in figure 10. The data for each airfoil is
written in two segments, defined in the x-z plane but written
in generalized x-y-z point triplets.

The first segment contains the upper coordinates and the second
segment contains the lower coordinates. There are as many
pairs of segments written in unit 4 as there are input airfoils.
See reference 23 for AIRFOIL input. Each segment of data on
unit 4 is headed by a GTM formatted input header card record
as follows: [AIRFOIL. -UPPER OR1

BINARY INPUT NACA NUMBER LOWER

GTM
COMMAND GTM DATA BASE NAME

Each segment of data is terminated by a separate card record
containing a GTM terminates commandi

END INPUT

70

B I NARY INPUT NACA 24 1' UPPER
.00000 i.0 .00000

- 1. 6 0.0, -, :-: 5
.04:829 0.0 .90805,:

:13143 0.0I 1.12356
.22252 0.0 1 .30831
.3180 0.0 1.47330
.41885 0.0 1.,2416
.52182 0.0 1.76424
.62'713 0. 0 1 .89573

96. 14205 0 .75744

98.13502 0.0 .43465
100.- 000 0.0 .00000

END INPFUT
F:INARY INPUT rNAC 24012 L]OWER

.00000 0.0 .00000'
.-9 , .0. I0 -.. 7 I

.45171 0 .0 -. ;78797

.61857 ' --.94430 - I

.77748 0.0 -1.07044

.93120 0.0 -1.17738

82.06307 0.0 -1. 91959

84.06904 0.0 -1.74173
S86.07515 0.0 -1.55843

88.08 140 0.0 -1 . -- 6961.
90.08780 0.0 -1.1751:3
92.019435 0.0 -. 974 85
94.10106 0.0 -. 76 58
96.10793 0. 0 -. 55612
98. 11497 0.0 -. 33723

100.00000 0.0 .00000
END INPUT

FIGURE 10 ILLUSTRATION OF GTM INPUT FILE
GENERATED BY THE AIRFOIL PROGRAM.

ORIGINAL PAGE IS 71
OF POOR QUALITY~

CIPHER: REPORT WRITING PROGRAM

The CIPHER program is a general purpose report writer and docu-
mentation program. CIPHER is designed to take an input stream
of characters which is a mixture of both the text to be output
and embedded control commands. The program processes the actual
text according to the instructions given and produces a stylized
report. The following capabilities are available:

User Specified Formats.

Upper and Lower Case.

Greek Symbols.

Indexing and Page Numbering.

Cross Referencing.

Superscripts and Subscripts.

Footnotes.

Equations.

Math Symbols.

Mixed Character Height.

Automatic Tab Setting and Paragraphing.

Automatic or User Controlled Paging.

Carriage Control.

CIPHER is interfaced to the Tektronix 4012 and the MOPS terminal
systems. By plotting the characters, any font may be generated
as well as any symbol which can be described. Both upper and
lower case English alphabetical characters along with most of
the Greek alphabet and numerous special mathematical symbols are
available.

Commands begin with a $ symbol followed by one (1) or more
English characters. About 20 commands to perform virtually any
layout function are available.

Physical Characteristics

HOST COMPUTER UNIVAC 1110 AND CDC 6600

FILE NAME(S) EX42-00002*CIPHER (ARS)

ABSOLUTE ELEMENT NAME CIPHER

LANGUAGE FORTRAN

PROGRAM SIZE 27000 DECIMAL

72

CARD SOURCE 2100

OPERATING MODE DEMAND

DISPLAY INTERFACE TEKTRONIX, MOPS

Program Usage

Input description presented below were generated using the
CIPHER program.

The'character.- -,hich are aval:ble represetr , ,ost c the Alphc,-rumilerc,
Greek, and Mathremant cal Operators c or'nly required. The progr..,n i

de;igned to accept, novw character.s so that nrew or, special ch-racters
iruied ca, be easily added.

ALPHABETIC CHARACTERS
Character Input syrr'bol

a,A A Note: see Carriage Control
b,B B

C
d,D D
e,E E
',F F
g,G G
h,H H

J,J J
k,K K
I,L IL
m,M M
n,N N
o,0 0
p,P P
q,J Q
r,R R
,S S

tj~ T
u,U U
v,V V
wW V
x,X X

y,Y Y
z,Z Z OR IGT aV q

PoOR UQUaL

73

6REEK CHARAC-TERS
Charn ctr .nput rymbol name

(:GA." ALPHA
SGE:B BETA
St G t CAP 6AMMA.

7 $35S GAMMA
$:G :6D CAP DELTA

0 SGD DELTA
(:EP'SILON EPSILON
4 *ZETA ZETA
SSETA ETA
8 ITHLEt A CAP THETA

t *THETA THETA
$L, LAMBDA

A SU MU
*1 SNU NU

C IXI XI

tXI CAP XI
T :PI PI

p :RHO RHO
2 SUM CAP SIGMA

$SIG SIG
STAU TAU

b6V UPSILON
HPHI PHI

ItPHI CAP PHI
x tGX CHI
9 $TPSI CAP PSI

SSPSI PSI
0 tGTO CAP OMEGA
) G6CI OMEGA

74

MATHEMATICS OPERATORS
OPERATOR INPUT SUMBOL

+ +

$,+-...

e .. NE
SLT

*GT
*LE
*GE

O 0

2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

PUNCTUATION AND MISCELLANEOUS OPERATORS
OPERATOR INPUT SUMOL

))

J 3

' AP'OS

€ tDCIL

? SQ
SEX
" CO

(tOBRC
*CEBRC

These chracters rppresern the iat of avable char.acters. Any
characters de:lirt ,d .Mic l are rot t.he l~t can e-asily adid.

75

The func.rtions li..t1 r ed belc,,: are s~?pecial func;ions and ope rat or.s provided to
allow t.he user tr c ons..ruct . re:di ,ble and .p. t.ract iv. e d: cunmri nt '. 5 or'e of
t.hese functions duplic:a:te typerter char ac:t.ers:rl.cs Others are r.equ.red
to construct equ ti rs. S,; .:orre oare directe.i to M fa nual conr t. ruection, The
purpoi:ose of these operators and functons is to give the user fl.rrl control
over, his docuernts form and constructior 1Wit.hout r-iquirlng a pre-existA g
copy.

OPERATOR DESCRIPTION

$NL
DS

These functlons are "Carriage Contro' characr.rs, NL
nsure:s tht, the next character, begins Cr, a ne, line.
DS insures that the next charact.er begins on a newr

line but ore line down. In other words thits is the
carriage return. These characers are used only when
it rnust be InsLur-ed that Innforratic n begins printing on a
new line, Rout.ne carriage, returns are handeled
automatically.

Information is supplied to thts pro.gr-am Ln BCO format..
The card images mayr come -from INPUT or CDC UPDATE.
In elther case , only the first 72 colurnn: mhV be u::ed
Sinse Engli.sh 5 not a "regular " lirgu age,ino gr.lrammat. cal
structure can be Implied. The entre grarnn, ltical
structure rust, be card input. This eans that ever

card input charact. fr- -i cudin blrin ls.--r,-ust be
consildered,, The t$ char-acter is the '"Er:d 0f
Information" symbol. No information, on a card will be
consdclered after a has been encountered.

card 2 [.B.. :NLH]IS FLEECE ... V

card 1 [IF1.,R:Y HAD A LITTLE SK
These cards would produce:

Mary had a little lamb.
His fleece...

76

*Hi
This character or functilon changes the character size,
It applies to all characters following until the height is
changed again. The following serles, of characters
represents the character szes -for-
3=0,1,2,:3 4, 5 ,6 ,7,,9 . . .

0,,34, 6 9 9

WPAGE

This function insures that the !information following
begins'on a new page. When thl.s function is
encountered, a maOor informtionr, change is ass:umed.
*TAB Is set to zero. Normal:y a new page Is ,sta.rted
when the present page Is full. In this case no chan,;e
are made to any of the extsting operating par-ameter.

'PP
This function is the "Paragraph" s .rnbol. Information following thi.S
functi.on will begin on a new line with a blank line between the lin-es.
*TAB is set to zero.

41

These functlonal chracters are eQultvalent to the '"Shift."
key on a typewriter. The 1's are the "upper case "

shIft. The .i' are the "lower case" shift. The 'sinIle
arrows apply only to the followirg charactr. The double
arrow characters apply to all following charactere unti'
the next double arrow functional is: encountered.
Examples--each card mrnage is followed by the printed line
generated

iNARY,.1 THE IVAMP OF ISAVANNAHEX

MARY the Varimp of Savanna,,h]
1tIARIYLu1 THE: IVAMP OF fSAV,ANNAHtEX

MaRy the Vamp of SavannahI3

*UL
*UL(-----)

This functionr is the underline function. The first form
will cause an underline to be dr.awn from the $UL to the

ORIGINAI PA 1H7
OF POOR QUALIT7 77

nlext~po The ,,,pond -form w~ll undorlI ne the cen tire
expreo Aorn ericlo~ed \ih nthe Noete;1 ~OTE,. Thp,
parer t h---!s will not be rInc:uderd in the prIn ted

r- A Hm p LE,

underllnc: t a n exarfipk? ___

underllie, a.~t nd xrie

-TAB3I
Thlf; -Pun'otlor will caujse(5r Indentatiaon of al sbeoue1

on the equat-lore

This 1netto ;mo--re rr he le Ct rcir- iThls
functon ;sm;a jr ink-fcmotiocr ap Ut prj c) r
encounter--Ing thl-s furic-Oor, the prec e dim~ lipi :rlrited(
and a new Ilie 1z; st-ar-ted.

ThIs -function is ued to ~ebetabIular datae. Ar
Inderatior, for, the: next ch3racntEr 1 D computed u-s~rng

This3 Inden-tatilor Ls meeaSurred l r-om the
LEFT MARGIN 4- TABE3'TIHG. This- funct(Aon 1)'k !?.b

us;d wihIn, dtany, other- functlon such a
UL,TITLEr.tc:0

t-REF(n are)
The-se tw'o func-l.ons re.pre-,enrt. thec "Crcv' efresig'
capablility Inis- re pcrt qeeco' 'm an be any
sC r'lp of uip to tren nurrilers a.nd let-ters; The REF
function dlre-tha t this-; polit In a docmer, ma'.y be
reforencecl by othe rscic of the- sawe dlcum) ent-
The -SEE func-tlon 8:U~ 0COmita to bi? lnoected litoc
the dccun'ent r'efer'er-Inq -thle soction, The -ollo -.Ing

f4R:EF THl:-2E(01111 ON:)

78

*TITLEI(...)
This furnct.on will cause the expression withirln the

parenthesis to be centered. The charact er helght of

the title can be controled by the "I co parameter. The

•values of "I" may vary from 0 to 9. The height
sequence is the s,ame a that given in the tHi funtion

description. This parameter Is optional. If oritted,

the title helgth will be, tha-t of the prejvou s olutput.

Example:

TF$TLE5(TITLE DEMlONSTRATION)

TITLE DEMONSTRATION

$SUP(....)
*SUB(....)

These functions accompllitsh the subscripting and

superscripting required in technical reports. The

parenthesis in these function are optlonal. They .are

required for mult-character subscripts and where

nesting Is required for subcrlpts to superscri-ptsetc.

These functiorns always; refer to the previous char.acter.

These functi.ons are also used for the upper and lower

lrmits to an Integral sign
Example 1. A single character subscript

r:N SB:SUBT

Example 2. A multi-character sulbscript

It: 6 B: S LI B(T :[IME)
sinf time

Example 3. Supersopripts with sub-and-superscripts

(NGAP SIF'(G T t:S UF'2 SUEB P)
2

$uflQ p

fINDEX(....)

This function accomplishes the indexing. The expression

within the parenthesis will appear in the index. The

expression may be up to 50 characters long,and may
contain qny characters or -functions. The
alphabetzation is based on the first 20 characters only..

Subscripts and Superscripts: are taken into account for

alphabetization .

Example 1. This card is th, Index Generator for this

ORIGINAJ PGaE~ e 79

QF POOR QUALITY

;:e tionr .

fINDEXIND EX GENERA TI ON)

$)1

INTI

tEORCi

These functions are all variable heigth oharater'. Most
-of these are sometimes used in nested st.uctions. The

purpose of these functions is to add clarity to a
nested group of these symbols. "''" is tht-e stanciard
.hegth sequenge givrn in the 1-1 section with one
addition. "i" may be equal to T. In this case -he

character will be tri.ple normal heigth. This s: to be
used when a numerator-denorinator expression is to be
enclosed in symbols.
Examples!
$(T 4(0 U(1 (2 8(3 (4 4(5 s(6 4(7 4(8 S(9

S lTiNT ... J
An integral sign at times requires upper and lower
Irnmits. In this case the upper and lower limits are
included within the parenthesis as supersocripts and
subscripts., "L" Ls the optinol heigth key as descrlbed
in the preceeding section.
Examplese

T 5(48 U P(+ IN!F4 SUB(- INF))(A+B)DX

jf +(pbdx

.4CARD(....)

This functiorn will draw a card irnage over the expressionr
within the parenthesis. AIl the Information contained
within the parerthesis will appear on one line.
examp:le=

fC:,A D(CARD IMAGE EXAMPLE)

80

rDLEN(....

These functions allow an numrerator'dencminator
expression to be writtien with the numerator dLrectly
over the denorinatorl. Either may appear frs:tc,,however,

no other' expressidons: can appear betwv,,ieen ther'i.

Numerator and deriorilnat'or e::xpressions lmay not.. be
neested. The longer of the two expressions should come'

.first, ~f is done the second expr-esslon will be center'ed
with repect to the first.
Example
[(DEN,(A4+C D) TIINU 1.(2P:FT)
2T

a+cxd .

tSQRT(....)

This f Unction dr:aws the Squ.are Root symbol ver an
expression. The expression may be multit-line i n a
numerator/denomir nator expresson.
Example 1.

SQRT(A-13 ISUP3)

Example 2.

[S6RT(EN ((A- lB))#NU J(E tSUP2))

,2

(a+-b)
Example 3.

*DEN(S R T (A + -B) -SUPSo))tNUM,. 1)

4:CODE
4ENDCODE

These functions are usced to list FORTRAN or other.
code. -The distiction is that on line of card input.
occupys one lire in the report. NOTES The I. must not
be used with-in the code block. The first symbol signals
the beginning of a code block. The second symbol :ignas
the end of a code block.

PROGRAM EXAMI'PLE(INPUT, OUTPUT)
DIMENSION X(10)
DO 10 IL 1 , 10

81

COT PROCESSOR

Due to the manner in which images are stored upon mass storage,
the presence and sequence numbers in columns 73-80 significantly
increases the physical amount of storage required. Blanking
these columns is a difficult and enormous task via the ED
processor, therefore, a small processor called COT has been
developed for this purpose.

This processor and its two associated SSG run streams can do
this blanking quickly and conveniently. The processor has two
modes of operation of which one and only one must be specified.

The "T" option will Lruncate the named element and the "C"
option will compress it.

To use the processor to compress the element FROG in file HOP,
one simply types:

@EX42-00002*UR.COT,C HOP.FROG,HOP

To truncate it the call is the same except that the "T" option
is used.

There are also two SSG skeletons in UR that may be used to com-
press or truncate all symbolic elements of a file. To use these,
simply type:

@USE FN,your-file-name

@ADD UR.TRUNCATE

or

@USE FN,your-file-name

@ADD UR.COMPRESS

To "expand" a compressed element, one needs to type:

@ELT,IGN HOP.FROG

@ADD HOP.FROG

Note that the ELT processor must be used and that both the "I"
and the "G" options are needed hence the @ADD behind the ELT call.

By compressing all symbolic elements in a file savings in re-
quired storage space has been observed as high as 50% with
mean near 25%.

82

FLOWGEN: AUTOMATIC FLOW CHART GENERATOR PROGRAM

This section describes the automatic flow charting program,
FLOWGEN, of reference 36. FLOWGEN produces flow charts of
Fortran language subroutines and is available for use on the
Univac 1100 series computing system. FLOWGEN is a CALCOMP
proprietary program which has been purchased for use on the
Johnson Spacecraft Center system.

Program Control

The FLOWGEN program is on the Univac 1100 mass storage file:

FM9*FLOWGEN

The use of the program requires the generation of an absolute
element based on the type of output device desired.

7@MAP,N FM9*FLOWGEN.FLOWGC,TPF$.FLOWGC (for CALCOMP)

or

7@MAP,N FM9*FLOWGEN.FLOWGM,TPF$.FLOWGM (for Microfilm)

For CALCOMP plots, an output tape must be assigned by

7@ASG,T 19,8C,CCP

The automatic flow chart processor, FLOWGEN, has been used to
produce the computer flowcharts for the .EDIN system. 'An illustra-
tion of its use is shown in the following Exec 8 run stream:

@ERS

@COPY,S DLG.,TPF$.

@MAP,N FM9*FLOWGEN.FLOWGM,TPF$.

@XQT
INPUT
IREAD=1,ISPEC=2
$END

Program Input

The various flags which must be specified by the user are input
by means of data cards sent to a namelist like input. The first
card of this input is a card starting in card column 1 and con-
taining the word INPUT. This card is a required card and follows
the XQT card. The NAMELIST input is terminated when a card con-
taining the word $END is encountered.

83

The NAMELIST input cards are free field cards of the form:

NAME=VALUE

The various NAMELIST parameters with their meanings follow:

IREAD Subroutine Selection Flag.

= 0, process only those routines specified by
input.

= 1, process all the Fortran elements on the
-specified files (preset to 0)

ISPEC Specification Statement Inclusion Flag.

= 1, do not include specification statements in
the flow charts produced.

= 2, include the specification statements (pre-
set to 1).

KRPCF PCF Tape Unit Number.

= 0, for drum processing.

= 5, for card reader input.

= N, for PCF tape unit N (preset to 27, = Unit X)

NFILES The Number of Files to be Processed on Logical
Unit KRPCF (preset to 1).

NSTART Number of the File on Unit KRPCF at which to
begin Processing (preset to 1).

REDUCE CALCOMP Plot Size Reduction Flag.

= N, reduce the size of the plots by N percent.

84

GTM: GEOMETRY TECHNOLOGY MODULE

The Geometry Technology Module (GTM) is a system of computer-
ized elements residing in the EDIN (Engineering Design and
Integration) System library developed for the generation,
manipulation, display, computation of mass properties and data
base management of panelled geometry. The GTM is composed of
computer programs and associated data for performing configura-
tion analysis on geometric shapes. The program can be operated
in batch or demand mode and is designed for interactive use.
The significant features of the program are:

1. Data bases containing two and three dimensional shapes
including standardized shapes generated by the GTM.

2. An exeQutive computer program containing a user
orientated language for controlling the generation,
display and calculation of mass properties on selected
vehicle components.

3. An auxiliary computer program and data base for the
construction and storage of language elements, menus,
user instructions and messages.

4. A library of independent geometry generation programs
for the creation of specialized geometric panelling.

The basic capabilities exhibited by the GTM are summarized in
figure 11. The first. Geometry Definition illustrates the user
capability to generate new geometry, use existing geometry in
standardized formats and use externally generated geometry from
another geometry generation program. In conjunction with the
user ability to define geometry, GTM provides the user with the
capability to manipulate geometry. The manipulation includes
translations, rotations, scaling, merging of geometric compon-
ents, division of geometry and surface fits. GTM also provides
for display of geometry. The geometric display can be trans-
lated, rotated, overlayed or zoomed for image enhancement. Mass
property evaluations may be commanded. The evaluation includes
a printout of weights, volume, center of gravity and surface
areas of the accessed geometry. The GTM also provides the
capability for easily interfacing with the EDIN system.

Program Description

The executive GTM module is composed of several major executive
levels. These levels are called by the GTM executive, named
MASTER. The major executive levels are the input module, cluster
edit module and segment edit module. Figure 12 illustrates the
GTM program organization.

85

z-_ i /

-,,DISPLAY
-

MASS PROPERTIES
GEOMIETRY MANIPULATION

001

GEOMETRY DEFINITION i o-

EDIN SYSTEM INTERFACE

FIGURE 11 GTM CAPABILITIES,

MASTER
MODULE

DATA SEGMENT CLUSTER
INPUT EDIT EDIT

NEW GEOMETRY MODIFY STRUCTURE
EXISTING GEOMETRY LIST DISPLAY
INPUT OPERATIONS STACK DISPLAY OUTPUT

MASS PROPERTIES

FIGURE 12 GTM PROGRAM ORGANIZATION,

The MASTER module (GTM Executive) is the control point in the
GTM from which all sublevel executives are accessed. It con-
tains its own language set which allows the user to perform data
base management functions, access sublevel executives and gen-
eral program control. Three primary sublevel languages are
available, input, segment edit and cluster.

The input sublevel executive is provided for reading data which
is stored in specific geometry formats. Two are available, the
Gentry format of reference 31 and the GTM format. GTM format
allows free-field data to be entered. The data may be any type
of information. This data is read in and stored in the data
base geometry tree structure. The INPUT module contains its
own language set and associated menus, which can be displayed
upon command.

The CLUSTER EDIT Module contains a language subset and instruc-
tions necessary for creating and maintaining the geometric data
tree structure. Functions are also provided for translation,
rotation and scaling of tree stored data and output of the data
in forms for interfacing with other EDIN technology modules.
In addition, it contains the necessary logic to display geometry
for image viewing. The display functions have a number of
features which allow the user to zoom in on a specific region,
overlay geometry, scale geometry and filter geometry for resolu-
tion. Mass properties evaluations are also commanded from the
CLUSTER EDIT Module.

The SEGMENT EDIT Module provides the capability to compose
geometric shapes, manipulate geometry at the segment level and
display of geometric segments. Specific operations include
translation, rotations, scaling, point redistributions, segment
cutting, point edit commands and display. The module contains
its own language subset addressable by the user.

The GTM provides the capability of maintaining and updating
geometry information in a name oriented data base. The geometry
can be a section, component or a cluster.

A section is defined as a sequence of arbitrary X,Y,Z points
defining a line in three dimensional space. A component is a
collection of sectionsapproximating surface points in three
dimensional space. A cluster is defined as a collection of
components which form a complete or partial surface configura-
tion. The data can be tree structured at the cluster level so
analysis can be performed on groups or collections of data with
relatively simple data structure definitions. Once the data
is assessed by the GTM, a variety of manipulation techniques
are available at all data definition levels through. the GTM
language.

88

When geometry is inserted into the data base in a tree structure,
the tree can be defined at four levels as illustrated by the
following:

CLUSTER NAME

COMPONENT NAME

SECTION NAME

DATA POINT

Individual geometry data sets are generally stored only once
though each set may belong to more than one cluster (tree).

The GTM has advanced to the state where geometry can be stored
by name at several hierarchical levels in a tree structure.
Editing of the data can be performed at all levels of data
definition. The program contains the basic utilities which
permit the development of user orientated manipulation of geometry
and critical manipulation functions such as scaling, rotation
and translations.

Additional information on the GTM program descriptions may be
obtained from reference 33.

Physical Characteristics

The following presents a summary of the physical characteristics
of the GTM:

HOST COMPUTER: Univac 1110

FILE NAME(S): EX42-00002*GTM2. (SOURCE/
RELOCATABLES)

EX42-00002*GTM. (ABSOLUTE ELEMENT)
EX42-00002*DATA5. (DATA BASE/

LANGUAGE)
EX42-00002*ODIN-DBINIT2. (MAP

ELEMENT)

ABSOLUTE ELEMENT NAME: GTM

LANGUAGE: FORTRAN V

.PROGRAM SIZE: 24000 DECIMAL (OVERLAYED)

CARD SOURCE: + 12000

OPERATING MODE: BATCH OR DEMAND

DISPLAY INTERFACE TEKTRONIX

89

Program Usage

The computer program usage requirements described in this
section are oriented toward the Univac Exec 8 1110 version and
specifically towards the Johnson Spacecraft Center's installa-
tion. The actual program input (language commands) described
are applicable wherever the program is installed but the con-
trol cards of the program will differ from computer to computer.

Control Cards

The control cards for execution of the GTM are illustrated by
figure 13. After input of the run card, an assign of temporary
file one (1) is required for data base storage. The data base
and associated GTM language set presently resides on file EX42-
00002*DATA5, Instructions for creating a new data base and the
associated language structure are contained in reference 33.
A copy of the DATA5 file to temporary file one (1) is required
to protect the integrity of the data base. All I/O is stored
and retrieved from file 1 during execution. If the user wishes
to retain any data base entries during execution, he may perman-
ently save these entries by a copy of file 1 to DATA5 prior to
termination. Following the execute command, the user is free
to enter GTM orientated commands. A brief discussion of these
commands follows. Further information on the command structure
and associated language set can be found in reference 33.

Program Input. - The GTM operates upon a data base of stored
information which is manipulated by a language set which is the
input to the program. The information which follows describes
in brief the language structure of the GTM.

The GTM consists of a master level executive and other lower
level executives. The executives are responsible for executing
a specific task upon request by the user. A language consisting
of manipulation commands for controlling the GTM at each execu-
tive level is available.

Master Level Language. - The following commands are the state-
ments available in the master executive at the present time:

*IMAGE INPUT

*INPUT

*CLUSTER EDIT

*SEGMENT EDIT

SAVE DATA BASE ()

OPS STACK (::

90

FIN CARD @FIN

GTM COMMANDS

GTM COMMANDS

EXECUTE CARD @XQT GTM2.GTM

COPY DATA BASE - @COPY DATA5.,1.

ASSIGN CARD-- @ASG,T 1.

RUN CARD- /@RUN RUNID,ACCOUNT,ORGANIZATION

FIGURE 13 TYPICAL GTM RUN STREAM

MENU

EXIT

STOP

*Sublevel executives

Descriptions of the Commands

Image Input. - This command will cause a transfer to the Image
Input Executive. The Image Executive is provided as a means of
reading data which is stored in the arbitrary body coordinate
(IMAGE Program) format of reference 27. This data is read in
and stored in the data base geometry tree structure.

General CommandsF

MENU - Provides a list of available commands at the
current language level.

EXIT - Returns control to the master level language.

Data Source Commands:

DATA BASE (: :) - The data resides in the data base
in the card image form.

BCD FILE n The data is a file n and is formatted data.
BINARY FILE n - The data is a file n and is unformatted

or binary data.

Tree Structuring Commands: The IMAGE formatted data contains
status codes of 0,1,2,3. All points are considered status 0
except as follows:

Status 1 Beginning of a new section.

Status 2 Beginning of a component or subcomponent
(synonymous in the GTM)

Status 3 End of a cluster of components.

The status flags are used when entering the data into the GTM
data base to position the data within the geometry structure.
For each Status 3, or the beginning or a file of input, the
following command must be input:

rCLUSTER]
VEHICLEJ - -

92

This command will cause all subsequent data with status less
than 3 be entered into the tree under the name . For
each Status 2 encountered, the following command must be input:

[COMPONENT] -

This command will cause all subsequent data with Status 2 to be
stored in the data base geometry tree structure under this name.

NOTE: For Status 1, the section names are set by default only.
The default names are:

SECTION 1

SECTION 2

SECTION n

for each Status 1 encountered in the component.

INPUT. - This command will cause a transfer to the free-field
data and can be used to enter data blocks and any type of
information. The input block has the following requirements:

HEADER This statement gives the type of storage and the
name under which the data is to be entered into
the data base.

END This statement signifies the end of the input
block.

Types of Header Statements:

BCD INPUT (: :

This header is used to store the card image data in
the data base.

NUMERIC INPUT ()

This header is used to enter numeric data into the
data base. The data is read in a free-field format.
The values on the card must be separated by de-
limiters, which can be either a space or a comma.
Commas back to back specify null fields between them.

93

OPS STACK o _

This statement is used to input an OPS Stack to the
data base. An OPS Stack is an instruction string of
commands which can be executed by using the OPS
STACK : : command.

Input items can be read from other files using the READ FILE
n command. This will cause the read to transfer to the speci-
fied file and continue with that file until the file is
exhausted.

94

Cluster Edit

The Cluster Edit language subset contains instructions necessary
for creating and maintaining the geometric data tree structure.
Functions are also provided for translation, rotation, display
and scaling of tree stored data and output of the data in forms
for interfacing with other programs.

Edit Commands.

[CLUSTER
BUILD COMPONENT : :

SECTION J

BUILD SEGMENT ",

CLUSTER
ACCESS COMPONENT

SECTION
-SEGMENT

.CLUSTER '
LOCATE COMPONENTI

LSECTION J

[CLUSTER
INSERT COMPONENT (: :_)

[SECTION J

CLUSTER
DELETE COMPONENT (

[SECTION

CLUSTER
REPLACE COMPONENT ()

SECTION

[CLUSTER
COPY COMPONENT (: :)

[SECTION J

COPY [SEGMENT (: :)

[CLUSTER
ADD COMPONENTJ (: :

[SECTION

95

Output Commands.

LIST] CLUSTER
S COMPONENT (: :
SECTION

TREE LIST

LIST AVAILABLE CLUSTERS

COPY BINARY (:)

COPY BCD(:

Transformation Commands.

Rotation

PSC
YAWJ

[THETA)
PITCH --

[ROLL]

S RCEN
[ROTATION CENTER

RUEC 1
[ROTATION VECTORE ROT
ROTATE

Scaling

MAG =

XMAG =

YMAG =

ZMAG =

, MAGC
[MAGNIFICATION CENTER] =

CALE

96

Display Commands.

DISPLAY : :

DISPLAY + : :

DISPLAY -

REFRESH

AFILT =

RFILT =

PSI=

THETA =

PHI =

SYM

NOSYM

SCALE =

ZOOM =

97

Translation

XMOVE =

YMOVE =

ZMOVE =

MOVE

Bounding Commands

START

STOP

Register Commands

[BUILD
ZERO ACCESS

LLOCATEJ

ACCESS [BUILD 1
ALOCATEJ

BUILD [ACCESS1
LLOCATEJ

LOCATE [ACCESS1
LBUILD

Miscellaneous Commands

MENU

OMIT

EXIT

Description of Commands.

Edit Commands. .Addressing a tree structure requires the
maintenance of a list of data pointers, one for each level
of the tree. These lists are called registers. Three
registers are maintained in the GTM, a build, an access
and a locate register. The build register is constructed
by the GTM when the geometry is initially stored. The
build register can be thought of as the output register.
For instance, data is copied from the access register to

98

the build register. The access register is used when a
geometric manipulation is performed. The access register
can be thought of as the input register, although many
commands affect the data in this register. The locate
register is a temporary register used when data is being
transferred or modified. The locate register is not saved
from command to command. It is zeroed after each use.
It is used as a working register by other executive
functions so it must be reestablished implicitly (by the
program) or explicitly (by the user) prior to its use.
The edit commands are used to initially establish the
register as well as to maintain the actual data referenced
by these registers.

The register contents are used to control the limits of
action of such statements as copy, move and rotate. There
is an entry in the register for each tree level. The
specified action such as exemplified above begins sequen-
tially at the first significant (non-zero) entry, and
proceeds for all data below that level. Thus, if only
the cluster entry -is non-zero, the specified action will
take place on the entire cluster. If a component is
specified, the action will apply to that component only.
If a section is specified, the action will apply only to
that section.

The edit commands must proceed in a hierarchical manner.
A cluster must be referenced before a component, and a
component must be referenced before a section.

LUSTER
BUILD COMPONENT

LSECTION

This command provides for the creation of a new entry at
the level where it is applied. If an entry by the same
name already exists at this level, the older entry will
be destroyed and new entry will replace it. This command
can be used only for the creations of new entries (see
REPLACE). The BUILD command is used to maintain the
BUILD register.

BUILD SEGMENT : :

This command,.although similar to the preceding commands,
Sis not a tree structure command because it is manipulating
geometry at the lowest level data structures (the segment).

99

The command will cause a new title to be defined in the
data base in preparation for the receipt of a data block
representing a sequence of X,Y,Z coordinates. SEGMENT
EDIT Commands which follow will perform the actual data
structuring.

CLUSTER
ACCESS COMPONENT

SECTION
SEGMENT J

This command is used as a prelude to the manipulation of
geometry within a tree structure. It establishes a
sequence of pointers called the access register which
identifies the geometry to be manipulated.

The ACCESS Command actually provides for the redefinition
of the contents of the ACCESS Register. This register
contains information which determines data to be copied.
For example, the register determines the insertion
position and the replacement position for INSERT and
REPLACE Commands. The contents of this register also con-
trols the data to which transformations are applied.

[CLUSTER
LOCATE COMPONENT

SECTION

This command is used as a prelude to the use of data
associated with the locate name. For example, to copy
or insert data from one tree structure, one would use the
LOCATE Command prior to the COPY Command.

This command actually maintains the Locate Register which
is essentially a temporary set of pointers for the purpose
of buffering data into a tree structure controlled by the
Access Register. It is used primarily by the INSERT and
REPLACE Commands. If the item to be transferred using
an INSERT or REPLACE Command is itself a resident of a
tree, the LOCATE Commands must be used to define the
data prior to the command execution.

-CLUSTER
INSERT COMPONENT (

SECTION

100 ORIGINAL PAGE I
OF POOR QUALITI

This command will cause a new cluster component, or
section to be inserted into a geometric data tree structure.
The position of the insertion is defined by the Access
Register and will be the position in front of the position
specified by the access.

NOTE: If the data to be inserted is part of the tree,
the named () title field must be replaced
by a proper series of LOCATE Commands.

[CLUSTER
DELETE COMPONENT (: :)

L.SECTION J - - -

This command will cause the specified item to be deleted
from the tree. The Controlling Register is the Access
Register. If the name (::) title field is omitted,
the item deleted will be the item at the level specified
and defined in the Access Register.

[CLUSTER

REPLACE COMPONENT (: :
SECTION

This command will cause one item to be replaced by another.
If the new item is resident in another tree structure, the
named () field must be preceded by an appropriate
series of LOCATE commands.

CLUSTER
COPY COMPONENT (: :)

[SECTION - - -

This command will cause the specified data to be physically
copied from its current data source into the tree structure
specified by the BUILD Command. If a BUILD Command was
executed prior to the COPY Command, the highest level copied
will have its title changed to the title given on the BUILD
Command. All other titles will remain unchanged. If BUILD
Command was not given, all titles remain unchanged.

COPY SEGMENT ()

This command can be used to copy segments into a tree
structure as sections. The title of the section must be
specified by a BUILD SECTION Command. Several segments
can be copied into a single section by executing more than
one COPY SEGMENT Command before executing a BUILD SECTION
Command.

101

Segments may be copied into segments by executing a BUILD
SEGMENT Command prior to the COPY SEGMENT Command.

The SEGMENT EDIT sub-language executes transformations which
can not be performed on tree structured data. Data stored
in the tree structure must be copied to segments before
the Segment Edit functions can be performed. This is done
by first executing a BUILD SEGMENT Command and then execut-
ing a COPY SECTION Command, and repeating for each section
for which Segment Edit functions are desired.

CLUSTER 1
ADD COMPONENT (: :

-SEGMENT J

This command is equivalent to a COPY Command except the
data is not physically copied. Only pointers are trans-
ferred so that the proper tree linkages are established.
If the (: :) title field is omitted, the current
Access Register is used to control the command. Titles
of components and sections can not be changed by using
the BUILD Command prior to an ADD Command ; this would
result in an error.

Output Commands:

CLUSTER
LIST JCOMPONENT (: :

SECTION
LSEGMENT

This command will cause the contents of the specified tree
level, or item, to be listed. Thus, LIST VEHICLE provides
a list of all components in a vehicle. LIST COMPONENT
provides a list of all sections in the component. LIST
SECTION or LIST SEGMENT provides a listing of all points
in the section or segment.

TREE LIST (:

This command will cause the entire tree structure of the
specified vehicle to be listed.

LIST AVAILABLE CLUSTERS

This command will cause a listing of the vehicles available
in the data base to be listed.

102

COPY BINARY (:)

COPY BCD (:

These commands will cause the specified vehicle to be out-
put in the IMAGE format of reference 1. The first command
causes a binary file to be written. The second command
causes a BCD file to be written.

If less than a full cluster is desired, the (: :)
field must be omitted and the output item established by
the appropriate ACCESS Commands. START and STOP apply to
this command.

Transformation Commands. - These commands use the right hand
coordinate system with x position forward.

Rotation Parameters:

[PS]
YAWJ

This is the yaw angle in degrees desired for this rotation.

rT HET A

[PITCHJ

This is the pitch angle in degrees desired for this rota-
tion.

[PHI]
ROLLJ

This is the roll angle in degrees desired for this rotation.

[RCEN
[ROTATION CENTER ' '

These are the X,Y,Z coordinates of the center of rotation.

R V E C - .1
[ROTATION VECTOR ' '

This is an alternate way of inputting the rotation angles.
In this case, it is a rotation vector with I,J,K input.
This does not need to be a unit viector.

103

ROT
LROTATION COMMAND]

This command will cause the specified item to be rotated.
The data to be transformed must have been established by
an appropriate set of ACCESS Commands. The desired rota-
tion parameters must have been established before this
command is issued. The default parameters for all para-
meters are zero. The values established are saved and
need not be changed for subsequent and identical rotations.

Scaling Parameters. - The parameter commands are:

MAG =

This command causes the X,Y,Z scale factors to be set to
the same value.

XMAG =

This command sets the X scale factor.

YMAG =

This command sets the Y scale factor.

ZMAG =

This command sets the Z scale factor.

MAGC
MAGNIFICATION CENTERS] '

The scaling equations used are:

XOUT = (XIN - XC) *XMAG + XC

YOUT = (YIN - YC) *YMAG + YC

ZOUT = (ZIN - YC) *ZMAG + ZC

This allows the scaling or magnification to take place
about a specific point. The center of magnification
(XC, YC, ZC) is input by this command.

[SCALING COMMAND

This command causes the specified scaling to be executed.
The item to be scaled must have been established by a
preceding set of appropriate ACCESS Commands.

104

NOTE: The default values for scale factors are 1.0, 1.0,
1.0 and 0.0, 0.0, 0.0 for the magnification center.

Translation Parameters.

XMOVE

The X translation distance.

YMOVE =

The Y translation.distance.

ZMOVE =

The Z translation distance.

E MOVE
TRANSLATION COMMAND

This command will cause the translation to occur. The
item to be translated must have been established by a
preceding set of appropriate ACCESS Commands.

NOTE: The default translation values are 0,0,0.

Bounding Commands.

START

STOP :

These commands allow a Start and Stop position to be
specified for a given operation. If the item being
operated on is a cluster, these can be component names.
If the item being operated on is a component, these can
be section names.

The operation specified included the start position, the
stop position and all items between.

The Start and Stop Registers are nulled after each use.

These commands can be used prior to the following commands
to identify geometry to be manipulated.

COPY

LIST

COIY BINARY

105

COPY BCD

ALL TRANSFORMATIONS

Register Commands.

[BUILD
ZERO ACCESS

[LOCATE

This command causes the specified register to be set to
Zero.

BUILD 1 BUILD 1
ACCESS I IACCESS.I

LLOCATEJ LLOCATEJ

These commands allow the contents of one register to be
transferred to the other specified register.

Miscellaneous Commands.

MENU - List a menu of the available commands.

OMIT - Exit the section.

EXIT - Return to the next highest language.

106

Segment Edit

A segment is a sequence of X,Y,Z coordinates in three dimensional
space. They are distinguished from sections in that they are
not part of a data tree structure as in the case of the section.
Each segment is resident in the data base under its own unique
title. Therefore, any transformation can be executed on the
data including transformations which increase or decrease the
number of data points. The number of data points must remain
the same for point level data in the geometric data tree struc-
ture.

Point Edit Commands. - The Point Edit Commands are those which
apply to a single point of data. Since the definition of the
internal data is the ordered set of coordinate points, each data
point has 3 values and has an implied point number corresponding
to the order in which it was placed in the data base. This
point number is used to establish the action position for future
point edit commands. The Point Edit Commands are:

POINT = n

IND (X,Y,Z)

REPLACE] (X,Y,Z)

INSER (X,Y,Z)

[DELETE (X,Y,Z)

DEF
DEFINEJ (X,Y,Z)

AD (X,Y,Z)

P n
[POINT] n: This command- defines a point number where some

subsequent action may be performed on a segment. It is referred
to as the action position within the segment.

(X,Y,Z):

or point number of the point in the segment nearest the specified

107

Each action command has an optional title field associated with
it. Each action requires two titles; the title of the segment
to process and the title under which to store the processed
segment.

The title of the segment to process is either the input title
or the title of the last segment output, or the title of the
last segment accessed, in that order.

The only way to specify an output title different from the input
title is to use the BUILD Command. This command will set the
output title. Immediately after execution of an action, the in-
put title is reset to the output title, so that this title then
becomes the default title.

Limit Definitions: The commands are:

START X,Y,Z

STOP X,Y,Z

NSTART = n

NSTOP = n

These commands determine the limits between which a given trans-
formation is to take place. START and STOP use FIND to determine
NSTART and NSTOP, the first and last point numbers.

Translation: The commands are:

XMOVE =

YMOVE =

ZMOVE =

MOVE (: :)

XMOVE, YMOVE and ZMOVE set up the translation distances. The
default values are zero. The command MOVE causes the actual
translation to take place.

Scaling: The commands are:

XMAG =

108

YMAG =

ZMAG =

MAG =

[MAGC = X' Z
MANIFICATION CENTER C'C'

SCALE ' '

XMAG, YMAG and ZMAG are the magnification factors applied
during the scaling operations. MAG sets all of the magnifica-
tion factors to the same value. The default magnification
values are 1.0. The transformation equations are:

XT = (XI-XC)*XMAG + XC

YT = (YI-YC)*YMAG + YC

Z = (YI -Y)*ZMAG + ZT I C C

The Command MAGNIFICATION CENTER = XCYC,ZC establishes the

values as XC,YC,ZC . The default values are zero. The Command

SCALE causes transformation to be executed.

Rotation: The ROTATIONS Commands are:

YAW - (Degrees)

PTHETCA (Degrees)

[HROLL]= (Degrees)

[RCEN
ROTATION CENTER] XC'YC'ZC

[ROT
ROTATE] (: :)

YAW, PITCH and ROLL establish the rotation angles of the trans-
formation. The default values are zero. ROTATION CENTER

109

establishes the center of rotation of the transformation. The
Command ROTATE causes the transformation to be executed.

Cutting a Segment with a Plane:

Plane Definition: The Plane may be defined and used in the
rotation command. In this case RCEN is a point on the Plane,
and PSI, THETA and PHI are angles describing the direction
of the normal.

PLANE = XC,YC,ZC,PSI,THETA, PHI: This is an one-line
command setting. all the values described above.

XCUT = : This assumes a YZ Plane passing through the
specified X with a direction of positive X.

YCUT = : This assumes a XZ Plane passing through the
given Y value in the direction of positive Y.

ZCUT = : This assumes a XY Plane passing through the
given Z with a direction of positive Z.

PCUT (: :): This command will cause all of the points
in the direction of the positive normal, plus all plane
intersections to be output.

MCUT (: :): This command will cause all of the points
in the direction of the negative normal, plus the plane
intersections to be output.

Point Redistribution: The commands are:

NSEG =

EQLEN (:

These commands will cause the segment to be redistributed such
that the arc length of the line described by this space is
divided into NSEG equal positions. This means that NSEG + 1
points are output to describe this point redefinition.

Data Acquisition: Four CLUSTER EDIT Commands are included to
allow the user access to tree stored section data. These com-
mands are:

*ACCESS CLUSTER :

*ACCESS COMPONENT

110

2 22point such that (XS-XF) + (Ys-YF) + (Zs-Z2) is a minimum.

In some cases there will be multiple points of the same value.
For example, a cross section closing on itself will have
identical first and last points. This situation is handled by
the use of additional calls to FIND. If FIND already has been
called, then the search for the point begins at the next point
after the one found by the previous command.

[REPLACE] (X,Y,Z): This command will cause the point speci-
fied by action position to be replaced by the given X,Y,Z values.
If omitted, the point specified by the DEFINE Command will be
used.

INSERT (X,Y,Z): This command will cause the given X,Y,Z
values to be inserted in front of the action position. If X,Y,
Z is omitted, the point specified by the DEFINE Command will be
used.

DELETE (X,Y,Z): This command will cause the X,Y,Z input
point to be deleted, and if omitted, the point specified by the
action position will be deleted.
NQTE: If the X,Y,Z is input, a procedure similar to FIND is

used to determine the point.to be deleted.

DEFYZ)
DEFINE (XYZ): This command can be used in place of the

X,Y,Z inputs in all of the point commands except POINT and
DELETE.

ADD (XY,Z): This command will cause the input X,Y,Z
values to be added to the end of a segment. If X,Y,Z is omitted,
the point defined by the DEFINE Command will be used.

NOTE: The values determined by POINT and FIND are zeroed after
each use. They are not maintained.

Segment Level Commands. - Segment level commands are those
which apply or transform to an entire segment. The commands
fall into two groups - informational and action.

111

*ACCESS SECTION

*COPY SECTION (: :)

,These commands will allow the user to construct segments from

existing sections. See the CLUSTER EDIT Commands for a com-

plete description.

ACCESS (: :): This command will access a stored segment.
FFThe tle of this segment is established as the input or active
title.

Segment Creation:

BUILD (: :): This command will cause a new segment
to be built. It establishes the output title for any trans-
formation for the ADD X,Y,Z Command the the COPY Command.

COPY (: :): This command will cause the data stored
under the specified title to be copied to the title
specified by the BUILD Command.

Data Display:

LIST] This command will cause a listing of
the specified segment to be printed.

Miscellaneous Commands:

MENU

OMIT

EXIT

These are the general utility commands and have the same meaning
as described in CLUSTER EDIT.

Program Output. - Since the GTM program is basically a geometry
manipulation tool and highly interactive, program output essen-
tially remains transparent to the user. They are, however, two
types of output which are applicable. The first is those which
can be classified as geometric analysis outputs. The second is
formatted geometry.

Geometric analysis output includes mass properties evaluations,
program response to user input, geometric displays and geometric
parameters. The formatted geometry output is the cornerpoint
geometry sets used by other technology modules.

112

HABACP: HYPERSONIC ARBITRARY BODY AERO-
DYNAMIC COMPUTER PROGRAM.

The input to HABACP has been slightly modified to include a
namelist input to replace the former option card (card 1). The
new input is $HYPIN and has one input IPG which the array of
option numbers desired by the user. A sample input as as follows:

$HYPIN IPG=1,1, $

The EDIN version of the Hypersonic Arbitrary Body Aerodynamics
Computer Program has been modified to provide complete storage
of aerodynamic coefficients in the dynamic data base. The
coefficient arrays are stored in namelist format on the special
EDIN output file by name. The stored array lengths are determined
by the input quantity, NAB (Card Type 9, Column 61-62). Each
vehicle section may have a different NAB. The names are gen-
erated from the root names, examples in figure 14. The root
names are correlated with the force data headings which appear
on the printed output (i.e. CL = CL, CD = CD, etc.). The three-
digit integer identification, CASE*, is concatenated to the root
name to form the complete EDIN name. CASE is printed in the
upper left corner of each tabulated page of printout. If no
value for CASE is input, then only the root name will be used.

Using the above described technique, the user may modify the
construction of the names generated in the HABACP by the CASE
input. For example, suppose the vehicle consisted of three
sections, body, wing and vertical tail. Suppose also that the
user wished to store selected summations for the body alone, the
wing alone, the wing-body and the complete configuration. The
CASE input might be as follows:

COMPONENT CASE INPUT

BODY 010

WING 020

WING-BODY SUMMATION 021 (CASE INPUT ON SUMMATION
CARD TYPE 1)

VERTICAL TAIL 030

WING-BODY=VERTICAL 031 (CASE INPUT ON SUMMATION
SUMMATION CARD TYPE 1)

*(Card Type 8, Column 66-68 for component.
Card Type 1, Column 66-68 for summation.)

113

FORCE DATA ROOT
HEADING NAME DESCRIPTION

ALPHA ALP Angle of Attack (degrees)

BETA BET Angle of Yaw (degrees)

CD CD Drag Coefficient

L/D .LOD Lift Drag Ratio

CL CL Lift Coefficient

CM CLM Pitching Moment Coefficient

CA CA Axial Force Coefficient

CY CY Side Force Coefficient

CN CN Normal Force Coefficient

CLL CLL Rolling Moment Coefficient

CLN CLN Yawing Moment Coefficient

CF CF Skin Friction Coefficient

Figure 14 ROOT-NAME DEFINITIONS FOR ODIN/HABACP INTERFACE

The stored data would consist of all the force data arrays
listed in figure 14 for each of the above combinations of vehicle
components. The generated names for the above example would
be as illustrated below:

Angle of Attack Array -

ALP10, ALP20, ALP21, ALP30, ALP31

Lift Coefficient -

CL10, CL20, CL21, CL30, CL31

Notice the trailing zeros are part of the generated name; lead-
ing zeros are not.

The new EDIN/HABACP interface required modification to the sub-
routine AERO. The modification required a number of calls to
a new subroutine ADDREL. The calls are located immediately
following the normal printout statements. Subroutine ADDREL
and the associated function NAMGEN are part of the EDIN Data
Management System. The two routines generate the name oriented
output data described above.

115

IMAGE DISPLAY COMPUTER PROGRAM

The IMAGE graphics software package provides the capabilities to
access and display cornerpoint geometry. The program utilizes
a virtual graphics display technique which allows the user to
display multiple views, zoomed views of a specific region or
component and a windowing feature in which the user can specify
the display region on the viewable screen. In addition, a
symbolic routine is provided for picture labeling.

The Display Device

The IMAGE computer code is a software package designed to dis-
play in pictorial formfigures built up from combinations of
cornerpoint geometry. The primary display device is the Tektron-
ix 4012 display tube, however, the plotting routines also inter-
face with the CALCOMP plotter for hardcopy drum plots, the SD4060
for microfilm plots and the high speed online MOPS Hazeltine 4000.

The software provides the user with the ability to display
multiple views, zoowmed views of selected parts, windowing and
picture labeling. The basic description of IMAGE, its input
requirements, operational characteristics and output are
described in reference 27. The basic extention to IMAGE was
the installation of the virtual graphics display capability.

One may consider a set of points in 3-D space, the limits of
which dictated by the numeric capability of the host computer.
Upon this "virtual" space is then imposed a window through which
orthographic projections of the object are observed. This win-dow is plotted to user specified scale.

Virtual Graphics

Operations which are applied to the screen are called direct
graphics while those which are applied to the virtual display are
known as virtual graphics. The virtual display is a two-dimen-
sional surface of undeterminable size, limited only by the
numeric processing of the computer. The user is only responsible
for defining what portion of the view he wishes to be displayed,
e.g. a zoomed view. The virtual display-is similar to normal
plotting devices in that there is a movable point which may be
thought of as a writing cursor on the virtual display.

All or any portion of the virtual display may be viewed at any
time through the technique of windowing, The portion of the
virtual display to be shown is defined by rectangular boundaries.
This boundary is called the virtual window and only those vectors
which pass through the window are displayed.

116

It is not necessary to use all of the screen for display of the
virtual window. The user may define a rectangular section at
any location on the viewable screen for display of the virtual
image. Figure 15 illustrates the technique of windowing.

Program Usage

The program usage requirements described in the following para-
graphs are orientated towards the Tektronix/Exec 8 installations.
The program input requirements and available options correspond
to the IMAGE virtual graphics package only.

The use of the package requires two types of inputs, the con-
trol instructions and the actual program inputs. Figure 16
illustrates the instruction setup for executing the module.

General Program Input

The IMAGE program input consists of three types:

1. Program controls ($TYPE32) in namelist format.

2. Surface model data as formatted cornerpoint geometry.

3. Picture specifications ($TYP343) in namelist format.

The program controls and picture specifications are input in
standard namelist input format. The namelist reads are provided
for this purpose.

When a namelist read is encountered in the program, the entire
input file is scanned up to an end-of-file or a record with a
dollar ($) in column 2 followed by the namelist name requested
by the IMAGE program. Succeeding data items are read until a
second dollar ($) is encountered signifying the end of the name-
list. All data between the opening and closing dollar is
interpreted by the namelist input routine.

$TYPE32 Inputs

The first list ($TYPE32) is used for specifying general data
pertaining to program control including geometry file control.
The following paragraphs define each $TYPE32 namelist input in
detail. Each paragraph is headed by the name and default value
for the variable listed.

Usually the configuration geometry consists of more than one
component. In the data format of the IMAGE program, the data
for each component is terminated with an integer flag referred

117

V!RTUAL WINDOW

SCREEN

_ __ I WINDOWq

i~- -- F-~
IL-- r -

VIRTUAL DISPLAY SCREEN

FIGURE 15 ILLUSTRATION OF THE IMAGE WINDOWING TECHNIQUE,

END

NTH CASE ------ :-

1ST~ ~ ~ ~~~/~t-- CASE ----7 _ .-: :__ C:--:------" ' .

-- -- ---x
1ST CASE

PROCEDURAL n/ --

COMMANDS /

/ _s 7T, TEk i ANY NUMBER OF
-CONTROL - SETS OF PICTURE

cNRL T INSTRUCTIONS MAY
C 3U BE USED TO OBTAIN

MULTIPLE VIEWS,

FIGURE 16 IMAGE RUN STREAMFIGURE 16 IMAGE RUN STREAM

to as a status flag as described under Surface Model Data (be-
low). The merging of the geometric components is desirable for
plotting purposes. Therefore, the geometric components are
merged into a single component as the geometric data is being
transferred to the temporary file, TAPE3. The user of the pro-
gram must specify the number of components to be merged for
each picture sequence. This specification is accomplished by
the integer input var:iable ISTAT3.

ISTAT3 = 1 Integer variable number of vehicle components
with Status = 3 in the vehicle geometry which
the' user wishes to plot as a unit. The pro-
gram will count the number of Status - 3 in
the geometry deck and when the count reaches
this input value, the program will proceed to
the plot options for the vehicle components
which have just been read.

Several options are available to the user of the program for
accessing geometric data. Alternate files may be employed and
alternate formats may be specified. The input parameter for
controlling these options is the integer variable ITAPE.

ITAPE = 0 Geometry tape control integer variables with
the following possible values:

= -1 Geometry data (type 3) already exists
on unit 3 in a suitable form for dis-
play. No data will be read.

= 0 Geometry data (type 3) will be read
from Tape 5 (geometry data cards are
loaded along with picture-data control
cards).

= 1 Geometry data (type 3) will be read from
the geometry storage tape (tape 8) in
coded format.

= 2 Geometry data (type 3) will be read from
the geometry storage tape (tape 8) in
binary format.

The IMAGE program provides a flexible means of.controlling the
alternate geormretry .file, TAPES. MLultiple component.s may be
stored on TAPES. These compononts may be extracted in scquen-
tial groups or plotted individually. The input parameter forrewinding the geometry tape (TAPES) is IREW8. Usually, the

120

file is rewound for the first sequence of pictures, then through
the use of the input variable ISTAT3, additional groups of com-
ponents can be extracted for plotting purposes.

IREW8 = 0 Integer variable to control the position of
Tape 8 just before the geometry data is read
from it.

= 0 Rewind Tape 8 and then read geometry data
from it.

= 1 Do not rewind Tape 8, but start reading
geometry data from it in its current posi-
tion.

The integer, IREW8, permits the user to store more than one
group of vehicle geometrics on the geometry tape, then collect
and plot them by groups.

Geometry Data

The standard method for inclusion of geometry data in the run
stream is through the use of an @ADD control card. Geometry
data must be correctly formated in accordance with reference 27.

To aid the user, a number of file elements containing formated
geometry data have been created. These elements reside on
the file EX42-00002.DATA8.

$TYP343 Inputs

After the geometry has been added, the second namelist ($TYP343)
is input. This data set provides input for picture control
options e.g. zooming, view orientation, labeling, windowing and
scaling. Figure 17 illustrates the input logical flow for IMAGE.
Any number of views may be specified by inputing only one @EOF
after a TYP343 input. An exit from IMAGE is performed when an
inputof @EFOF is followed by another input of @EOF.

The following defines the TYP343 input variables and their
default values:

DXG 0 DXG defines the X axis orgin (in
inches) of the screen window. Fig-
ure 18 illustrates the 6rientation

121

READ

$TYPE 32

INPUT

OF YES EXIT

NO

YES
ITAPE

=-1

NO

READ READ DATA FROM UNITS
GEOMETRY OR UNIT 8 (BCD OR BINARY)
DATA SEE ITAPE OPTIONS

READ
$TYP343
INPUT

YES 1ST NO
EOF

FIGURE 17 ILLUSTRATION OF INPUT FLOW LOGIC FOR IMAGE,

122

VIEWABLE
SCREEN

S CAL -

SCREEN
WINDOW

DXG

7.5 IN.-_

FIGURE 18 ORIENTATION OF'THE SCREEN WINDOW,

123

ORIGINAL PAGE I.

OF POOR QuALM

of DXG with the screen window.
NOTE: When DXG is used in conjunc-

tion with the TEXT option,
it defines the first character
position.

DYG 0 DYG defines the Y axis orgin (in
inches) of the screen window. Fig-
ure 18 illustrates the orientation
of DYG with the screen window.
NOTE: When DYG is used in conjunc-

tion with the TEXT option,
it defines the first
character position.

SCAL 7.5 Size of the screen window (in inches)
in both the X and Y directions.
Reference figure 18.

PHI 0.0 Angular orientation (in degrees) of
the viewing plane with respect to
the X axis. See figure 19.

THETA 0.0 Angular orientation (in degrees) of
the viewing plane with respect to
the Y axis. See figure 19.

PSI 0.0 Angular orientation (in degrees) of
the viewing plane with respect to
,the Z axis. See figure 19.

SCALV (Initially Size of the virtual window in both
Computed) the X and Y directions. This para-

meter is primarily used for zooming.

DELX (Initially X axis translation of the geometry
Computed) coordinates to the display axes.

Used in conjunction with view trans-
lations and zooming.

DELY (Initially Y axis translation of the geometry
Computed) coordinates to the display axes.

Used in conjunction with view trans-
lations and zooming.

124

zo0

! PS

"" -.A -.\.... ' - . 0

" - .. -,THETA
I < PHI

FIGURE 19 ANGLE CONVENTION FOR THE VIEWING PLANE,

ORIGINAL PAGE W
OP POOR QUAI1,

125

DELZ (Initially Z axis translation of the geometry
Computed) coordinates to the display axes.

Used in conjunction with view trans-
lations and zooming

WINDO F Logical variable for drawing a
border around the defined screen
window.

TEXT F Logical variable for text input.

= T Text information will follow
TYP343 input.

= F No text information will be
input.

HTEXT .07 Height of the characters (in virtual
coordinates) in the text material.

ISHAD F Hidden line option.

T = Plot hidden lines.

F = Delete hidden lines..

IREFL 1 Reflected element flag. Provides
the option of plotting only the
input geometry or plotting the in-
put geometry and the reflected
'geometry.

1 = Draw reflected geometry.

O = Draw input geometry,only,

COPY 0 Logical variable, if true a hard
copy will be generated after the
current view is generated.

PAGE 0 Logical variable, if true the view-
able screen will be erased before
the current view is generated.

IQUAD 0 Corner point plot flag.

0 = Plot actual corner points.
1 =.Plot quadrilateral corner points.

126

PANEL: GEOMETRY GENERATION PROGRAM

The PANEL Program is a collection of general purpose geometry
definition subprograms developed for use in preliminary con-
figuration analysis. The PANEL Program consists of geometry
subroutines from reference 31 and other geometric generation
programs.

The program produces a vehicle surface definition in the form
of a sequence of quadrilateral panels defined by their four
corner points. The resulting cornerpoint data is acceptable
as input to the Hypersonic Aerodynamic Program of reference 31,
GTM, IMAGE or other technology programs in the EDIN system.
The input data for the assembled program is namelist and the
order depends on the subprogram options.

Program Description

The panel program has been structured into a sequence of first
level overlay elements that generate three dimensional geometric
shapes for use by the EDIN programs. The elements of the pro-
grams are linked through the use of the Univac Exec 8 MAP pro-
cessor. The subprogram options and input flow logic are
illustrated in figure 20.

Logical selection to the geometry generators in the subprograms
is controlled by $IPANEL. After completion of any generations,
model control is returned to the PANEL main program.

The coordinate system used in the program is the right hand
Cartesian system. In the convention used, vehicle is usually
positioned with the x-axis point forward, the y-axis pointing
to the right, and the z-axis point upward. The wing and body
surfaces are represented by sets of points in space called
panels. Each pair is a set of four points connected by straight
lines.

COPY5 Module. - The COPY5 module allows the user to input the
corner points of geometric panels.

The points on the body surface are input in rows and columns.
The number of panels in the whole section is defined by the
number of rows of panels times the number of panels per row.
The orientation of the geometric section is optional but two
rules must be followed regardless of the orientation.

1. Points along a row are input sequentially upward.

2. Rows of points are input sequentially to the right.

127

PANEL BDATAP INITIALIZATION

$IPANEL

IGEOM = 0 COPY5 ADDS EXISTING DATA TO
" ' 1 TAPE 8

ICEOM = 1 ELLIPS GENERAL ELLIPS OPTION
$INLTPS

IGEOM = 2 PATCH PARAMIETRIC CUBIC PATCH
S- $IPATCH-

IGEOM =3 TZOID GENERALIZED PATCH MODEL
"i $TRAPZ

IGEOM = 4 i TANK I BODY OF REVOLUTION
S$ITANK GENERATES ELLIPS INPUT

IGEOM 5 DBUBL DOUBLE BUBBLE TANK
$DBBIN MODEL MODIFIED BODY

OF REVOLUTION

FIGURE 20 GEOMETRY GENERATOR OPTIONS.

128

ELLIPS Module. - The ELLIPS module allows the user to generate
panel information for partially or completely elliptical cross
sections. The surface of the section is described by an ellipse
centered at some point off the reference axis and defined by
the major and minor axis as shown in figure 21. The portion
of the reference ellipse used to define the body section is de-
fined by the angular difference between 00 and 0L measured from

the negative z axis. A sequence of two or more sections describe
a surface. The PANEL Program generates the panel geometry for
an arbitrary number of sections. Each section can be equally
divided into an arbitrary number of divisions.

Cubic Patch Module. - The cubic patch is provided as an alternate
input method in the description of arbitrary shapes. In this
respect, it serves the same purpose as the surface-element in-
put method.

In the panel cornerpoint input method a vehicle section is
described by a large number of surface points organized in panel
fashion. In the cubic patch method only points along the bound-
aries of a patch are input to the program, and the distributed
surface points required for the subsequent panel calculations
are determined by the program.

The basic features of this method are that fewer input points
are required to describe a surface and the generated panel
size is controlled by two input parameters and may be changed
to meet the requirements of the problem.

Figure 22 illustrates how a section is described by this method.
Each of the four boundaries is identified in this figure; two in
the w direction and two in the u direction. The input data for
each of these boundaries can be input by array name. Boundary i
is defined by three arrays, XW1, YW1, ZW1, representing the
coordinates with respect to the reference system. Boundary 2 is
defined by the three arrays, XW2, YW2 and ZW2. Similarly,
boundaries 3 and 4 are defined as XU3, YU3, ZU3 and XU4, YU4
and ZU4, respectively.

The user orientates the model of the vehicle so that the number
1 boundary is to the left and the number 2 boundary to the right.
The order of the points is from the bottom to the top of the
patch. Note that a point must be included outside the patch
at either end of the boundary to give proper slopes at the corner-
points. Boundaries 3 and 4 are loaded from left to right. A
different number of points may be used to describe each boundary
up to a maximum of 20 for each.

129

z

BODY CROSS SECTION

REFERECE ELL PSE

/i- i "

S ., SECTION OF BODY

AZ .- DEFIID BY ELLIPSE

SAY

FIGURE 21 GEOMETRY DEFINITIC'N FOR ELLIPTIC METHOD,

INTERIOR PANTELS ARE GENERATED ON ADJACENT BOUNDARIETS
WITH EQUALLY SPACED POINTS BY ON ADJACENT BOUNDARIES

THE PROGRAM

Y /

FIGURE 22 INPUT DESCRIPTION FOR THE CUBIC PATCH TECHNIQUE,

Each boundary curve must be extended by one point on each end
to permit the computation of end point derivations. The second
point and the next to the last point on each curve must be com-
mon to the adjacent curves, as illustrated in figure 22. The
program generates equally space panels based on arbitrary num-
bers of rows and columns of panels selected by the user.

TANK Module. - The TANK model generates the x-coordinates along
a center line and the corresponding radii based upon simplified
geometry descriptions. The x-coordinates and radii can then
be communicated to the ellipse model (already available in PANEL)
for the actual cornerpoint geometry generation. Figure 23
illustrates some of the options available in the tank and engine
model. In addition to those shown th rd order nose transition
can be generated by specifying the initial ramp angle at the
point of tangenQy to the nose radii. Also, arbitrary base radii
may be specified providing the capability of generating engine
nozzles.

Double Bubble Tanks. - The DBUBL tank model, figure 24 , calcu-
lates the parameters required to generate double bubble tanks
in the ELLIPS model. The user specifies the position, rotation,
radius and separation distance. The subprogram calculates the
initial and final angles necessary to generate the bodies of
revolution representing the tanks.

TZOID Module. A TZOID Model body shape generator has been developed
for the PANEL program based upon the trapezoid. The method uses
straight line segments joined by radii. The shape is completely
controlled by the position and magnitude of the radii. There-
fore, the method is not restricted to trapezoidal shapes but can
degenerate into circles, rectangles, triangles or flat plots as
illustrated in figure 25.

Physical Characteristics

The physical characteristics of the panel program are summari-
zed as follows:

HOST COMPUTER: UNIVAC EXEC 8 (1110)

PROGRAM FILE(S): EX42-00002*PANEL. (SOURCE, RELOCA-
TABLES ABSOLUTE)

EX42-00002*PANEL. (MAP ELEMENT)

ABSOLUTE ELEMENT: OPANEL

LANGUAGE: FORTRAN V

PROGRAM SIZE: 19850 DECIMAL

CARD SOURCE: 4000

132

RTANK

RNOSE

SLNOSE**d

LTANK

FIGURE 23 TANK AND ENGINE MODEL.

U.

Ho

Dt)D~

FIGURE 2(DBUBL TANK MODEL GEOMETRY)

FIGURE 24 DBUBL TANK MODEL GEOMETRY,

Y.. U
' r = radius

TY = Y coordinate of centerT of radius

SZ Z coordinate *of .cente.r
of radius

ZL SUBSCRIPTS

yL U = upper
L = lower

..POSSIBLE BODY SHAPES

RECTANGULAR

SCRCUMLAR

A O RIANGULAR

• .FLAT PLATE

FIGURE 25 GENERALIZED TRAPEZOIDAL SECTION.

ORIGIAU PAM-jgy
OF POOR QUALyT 135

Program Usage

The computer program usage requirements described in this
section are generally orientated toward the Exec 8 1110 version
and specifically towards the Johnson Spacecraft Center installa-
tion. The actual program input requirements described are
applicable wherever the program is installed but the control
cards for the retrieval and execution of the program will differ
from computer to computer. Figure 26 illustrates a typical run
stream for PANEL.

There are five namelist input groups. The namelist IPANEL is
read before each section is input and describes the type of
geometry and the input format to be used. It conLains the
following data:

IGEOM = 0, cornerpoint geometry will be input for this
section.

= 1, elliptic cross-sectional data will be input
for this section.

= 2, cubic patch data will be input for this
section.

INFORM = 1, HABACP input format of reference 27 will be
used in this section.

= 2, namelist input format will be used for this
section.

IPRINTS = 0, no printout of panel characteristics,
= 1, print panel characteristics.

ISTOP = 0, more geometry data is coming.
= 1, stop the program.

The namelist $INLIPS may be used to describe elliptical input in
the following manner: Set IGEOM = 1 and INFORM = 2 in the name-
list $IPANEL.

NPTS - number of sections used to describe the surface.

AX(I) - array of longitudinal positions of the sections.

DELZX(I)- array of ellipse offsets in the z direction for
the sections.

DELYX(I)- array of ellipse offsets in the y direction for
the sections.

THETOX)I) array of angles, in degrees, which defines the
first points on the ellipses used to describe
the body sections.

136

ID ACCOUNT NUMBER ORGANIZATION

@RUN AB000, AB111 - Zll - L, EX42-00002

@ASG,T 8.,F///500 JAssign temporary file 8
ffor geometry output file.

@XQT EX42-00002*PANEL.OPANEL 1EXECUTE CARD

$IPANEL IGEOM = 0

PRINTS = 1 I$IPANEL DATA

$

$INLIPS or $IPATCH or $TAPEZ or $ITANK or $DBBIN (input data

@FIN IFIN CARD

FIGURE 26 TYPICAL PANEL RUN STREAM,

137

THETLX(I) array of angles, in degrees, which defines the
last points on the ellipses used to describe
the body sections.

NN(I) - number of divisions of cross sections desired.

AA(I) - semi-major axes of the defining ellipses.

BB(I) - semi-minor axes of the defining ellipses.

LAST - status flag for merging sections.
= ., this section will be merged with the next

to form a single section.
= 3, this section will not be merged with the

next.

The cubic patch technique is selected by setting IGEOM = 2 in
the $IPANEL namelist. If the namelist format is selected for
cubic patch input, INFORM is set to 2 at the same time. The
following is a description of the input required for the name-
list input option:

NPTS(I) - an array of four values defining the number
of points used for each boundary curve. Maximum
of 20 for any curve is allowed.

XWL, YW1, arrays defining the coordinate points of bound-
ZW1 ary number 1.

XW2, YW2, arrays defining the coordinate points of bound-
ZW2 ary number 2.

XU3, YU3, arrays defining the coordinate points of bound-
ZU3 ary number 3.

XU4, YU4, arrays defining the coordinate points of bound-
ZU4 ary number 4.

NOW - number of divisions in the w direction on the
patch into which the patch will be divided for
panelling purposes. It should be an odd number.
If not, the program will convert it to the next
higher odd number.

NOU - number of divisions in the u direction on the
patch into which the patch will be divided for
panelling purposes. It should be an. odd number.
If not, the program will convert it to the next
higher odd number.

ISOVR - a status flag which controls the joining of more
than one patch to form a single section.

0, the current section will not be joined with
the last section.

138

= 1, the current section will be joined with
the last section.

LAST a status flag which controls the joining of the
current section to the next section.
= 0, the current section will be joined with

the next section.
= 3, the current section will not be joined with

the next section.

The TANK option is selected by setting IGEOM = 4 in the $IPANEL
namelist. The following is a description of the input required
for $ITANK.namelist:
NAME DEFAULT DESCRIPTION

RNOSE .5 Radius of the spherical nose shape.

NSECN 5. Number of sections in the spherical nose shape.

RTANK 1. Radius of the tanks.

LNOSE 3. Combined length of the nose (includes spherical
and transition shapes).

LTANK 10. Combined length of tank (includes spherical base
shape, if any, but not the arbitrary base shape).

NSECB 6. Number of sections in the base shape.

RAMP 30. Ramp angle for nose transition shape (used for
third order fitted transition shape).

NSECR 3. Number of sections for nose transition.

ICONE 0. Cone option flag if ICONE = 1, conical shape will
be generated; otherwise a third order transition
shape will be generated.

IPRINT 0. Print flag, if IPRINT = 1, $OTANK output will be
printed.

ISRM 0. Base section flag. If ISRM = 0, spherical base
shape will be generated; otherwise arbitrary base
shape will be generated.

NAR 1. Number of sections in arbitrary base shape.

XA 0. X-Stations of arbitrary base shape with respect
to the base of the tank (excluding spherical base
cap).

139

The TRAPZ option is selected by setting IGEOM = 3 in the $IPANEL
namelist. The following is a description of the input required
for $TRAPZ namelist.

NAME DEFAULT DESCRIPTION

NSEC 1. Number of sections to be generated.

X 0. X-Stations along the body (usually negative)

YL 0. Y-Stations for center of lower radius.

.ZL 00 Z-Stations for center of lower radius.

RL 0. Lower radius.

NRL 7 Number of straight line segments for lower radius.

YU 0. Y-Station for center of upper radius.

ZU 0. Z-Station for center of upper radius.

RU 0. Upper radius.

NRU 7 Number of straight line segments for upper radius.

LINK 0 Flag for linking this component to previous com-
ponent.
LINK=1 Sets status for first point to 1
Otherwise status will be 2.

LAST 3 Flag for linking this component to next component.
LAST=O Sets status for last point to 0.
LAST=3 Sets status for last point to 3.

PRINTS 0 Print option flag, if 1, Namelist input and
computed values will be printed.

140

The DBBIN option is selected by setting IGEOM = 5 in the $IPANEL
namelist. The following is a description of the required in-
puts for $DBBIN:

DY Y-Coordinate of the center of the tank pair.

DZ Z-Coordinate of the center of the tank pair.

SEP Separation distance between the tank components.

ROT Angle of rotation measured from the negative
Z-axis.

RTANK Radii of the tank components.

Program Output

The primary output of the PANEL Program is a geometry file in
Gentry format, reference 27. Figure 27 illustrates a vehicle
configuration which was generated by PANEL. When utilizing the
TANK or DBBOUT options, the following data is output to the
TZOID, ELLIPS or PATCH generators:

DBBOUT Output Descriptions. -

THO1 Initial angle for generation.Body 1.

THL1 Final angle for generation Body 1.

THO2 Initial angle for generation Body 2.

THL2 Final angle for generation Body 2.

DY1 Y-Coordinate of Body 1.

DZl Z-Coordinate of Body 1.

DY2 Y-coordinate of Body 2.

DZ2 Z-Coordinate of Body 2.

DDY Differential Y-Position of bodies 1 and 2.

DDZ Differential Z-Position of bodies 1 and 2.

TH Intersection angle of bodies 1 and 2.

141

PAYLOAD BAY

,,.. .RJ-5 E.GCINES

S027 ! ENG. NOZZLES

/2 2 E!G/INES

LOX TANKS

-RJ-5 TANKS
./ / /7

: 'H2 TANKS

".. .
1T37.. .

FIGURE 27 INTERNAL ARRANGEMENT - RESEARCH CONFIGURATION

SOGFIe

TANK Output Descriptions. -

NSEC Number of sections generated for the body of revolu-
tion.

AX X-Station generated for the body of revolution.

RAD Radii generated for the body of revolution.

GAMD Angle at which transition from a spherical nose
occurs - degrees.

143

PLOTTR: AN INDEPENDENT COMPUTER PROGRAM FOR
THE GENERATION OF GRAPHICAL DISPLAYS.

A computer program is described for generating graphical informa-
tion from input data or auxiliary analysis programs on a variety
of graphical devices. Information can be presented in the usual
X-Y plot sense or can be presented as contour plots. The user
selects the segments of data to be plotted as well as the scal-
ing, annotation and titling of the resulting plot. Options also
exist for tabulating the data in coluimnar format and for plotting
auxiliary text in the vicinity of the plotted information. Dis-
play device selection is accomplished by interfacing the basic
computer code through routines which convert the internally gen-
erated plot vectors to hardware commands for the display device.
Separate computer programs are available for the following de-
vices.

Tektronix 4012 Display Terminal

Hazeltine 4000G Terminal (MOPS System)

CALCOMP Drum Plotter

SD4060 Film Plotter

The plotting techniques employed in the computer program are dis-
cussed in detail. User's instructions are presented with examples
which illustrate the use of the program in generating plotted
information from various sources and presenting the information
in alternate plot formats.

Program Description

The display of engineering information pertaining to a vehicle
design is one of the most important aids in the design analysis
process. Historically, design analysis data has been generated
on the computer and returned to the engineer in a printed format.
The data was normally transformed to a more usable graphical
presentation through hand plotting by the engineer or engineering
aide. More recently, hardware techniques have been developed
which permit automatic plotting of preselected analysis data.
The programmer normally provides precoded logic in the technology
module to generate plot vector files. The plot vector files are
then processed by the hardware plotting device and the graphical
display generated is returned to the engineer. The classical
approach described above requires -that the plot vector file
generation software be imbedded in every technology program.

144

The development of the multiple program technological analysis
techniques of the EDIN system has significantly increased the
requirements for the presentation of analysis data of an inter-
disciplinary nature. The use of plot vector generation code
within the technology modules does not meet the interdisciplinary
or the comparison requirements. The objective in the development
of a plot program, which is independent of the technology programs,
is to provide a means of plotting any data which was previously
generated by a technology module and stored in a data base.

The plot program specifications require the generation of X-Y
plots, cross plots and contour plots which compare not only data
from a specific analysis or any individual programs but also to
provide comparisons with previously generated data from any
source. The independent plot program developed meets the desired
specifications or objectives. It assumes no prior knowledge of
the information that is to be plotted at the time of execution.
Plot scales, annotations, titles, etc. are described by the user
through input. Plot data requests are specified by the user and
the data can come from many sources.

The independent plot program was an evolutionary development based
on requirements which were developed through use of the multiple
technology analysis technique. It has served well during the
period of development and seems to be adequate for most technol-
ogical data sources.

The plot instructions are read from the input data file and the
data to be plotted can be read from either the input file or from
auxiliary data files. The input instructions are read using a
single NAMELIST input list.

$PLOTIN.....$

Default values are preset for all input variables. The default
values tend to minimize the amount of user input required to
generate a plot. Generally the input specifications are pattern-
ed after the procedure one might follow in preparing plot by
hand. The user can select such options as grid, axis generation,
annotation, titles, auxiliary text, line type, symbol specifica-
tions, etc. Those options not specifically selected by the user
are generally bypassed in the program.

A simple self tutoring procedure for a new user can be described
as simply to scan the input specifications in a later section
and include values for the input variables which require changing.
A discussion of the plotting options which are available is pre-
sented in the following paragraphs.

145

Plot Data Input Option

The data to be plotted is read into the program in either of two
formats, array format or observation format. The data may come
from the normal input or from a binary file in accordance with
the following specifications:

INPUT = 0 Data will be loaded directly into the OBSTH
array from the normal input unit.

INPUT = n n Specifies the logical unit number from which
the OBSTH a ray will be loaded.

Array Format. - Array format specifies the numerical values to
be plotted are arranged in groups of similar observations such

as time, attitude or velocity. Mathematically, array format is
the sequence of numerical values:

OBSTH..; i = 1, NUMP; j = 1, NOBSER

where NUMP is the number of observations and NOBSER is the num-
ber of observation functions. The plot data is actually a single
dimensional array OBSTH k where k is the array element defined as:

k = (j - 1) NUMP + 1

The independent plot program normally reads data from the input
file in array format but other options are also available.

Observation Format. - Observation format specifies the numerical
values are arranged in groups called observations. Each observa-
tion represents a sequence of values defining one element in each
plot array. Observation format may be exp'ressed mathemati.cally
as:

OBSTHk(i,j); i = i, NOBSER; j = 1, NUMP

where NOBSER is the number of observation functions and NUMP is
the number of observations. k Is the array element defined as:

k(i,j) = (j - 1) NOBSER + 1

The independent plot program has the capability of reading data
as observation format when the alternate value variable:

ALTVAL = oTRUE.

option is specified. If specified, a transposition of the
observation format to array format is performed .and the array
format ultimately overwrites the input values of OBSTH.

Alternate Data File. - In addition to the two formats which can
be selected for reading from input, an alternate data file can
be specified:

INPUT = n

When this option is specified, the plot data is read from the
logical unit n in observation format, transposed and placed into
the OBSTH array in accordance with the specified values of NUMP
on NOBSER. No file positioning is done by the program but the
user can manipulate the file with the following input variables:

REWIND = .TRUE. Rewinds n.

NSKIPF = m Skips forward m Fortran files.

NSKIPR = m Skips forward m Fortran records.

The alternate file format may include as the first record one
word specifying the number of records on the file. If the one
word. record exists, the plot program can read it. and store the.
value as NUMP. This option is activated by the specification:

NUMP15 = .TRUE.

Multiple cases may be executed for as many plot cases as desired.
Therefore, different options may be specified on successive
cases. On the last case, the parameter:

STOP = .TRUE.

is set which causes program termination. No other plot instruc-
tions are executed in the last case.

X-Y Plots

The PLOTTR program provides for the display of numerical informa-
tion of the form:

Y. = f.(X.i) i = 1, NUMP; j = 1, NPLOT

where X and Y are arrays of observations of known length, NUMP.
Any array may be plotted with respect to any other array and any
number of pairs may be presented on a single plot. NPLOT is the
number of PLOTS.desired. Figure 28 illustrates the display of
two multiple curve plots. The input data for this plot is dis-
cussed in a later section.

Plotting is specified in accordance with the input variable array:

147

.- READ $PLOTIN

. FALSE
FALSE

S.CALCO PRINTR

TRUE TRUE

READ AND TRUE TABULATE
PLOT TEXT PLOT DATA

FALSE PRINTER

(6600 ONLY)
_7 PLOTS

GENERATE TRUE (6600 ONLY)

CONTOUR - CONTOR
PLOTS

SFALSE TRUE

FALSE
GENERATE FALSE

X-Y PLOTS -- PRINTR.>---'

(A) PROGRAM SCHEIATIC,

DESIRED INPUT VARIABLE OPTION

OUTPUT CALCOM CONTOR TEXT PRINTR

X-Y PLOTS TRUE FALSE FALSE T or F

CONTOUR PLOTS T or F TRUE FALSE T or F

PLOT TEXT TRUE FALSE TRUE NA

TABULATION T or F T or F FALSE TRUE

(B). OPTION SPECIFICATION,

FIGbURE 28 PLOT OPTIONIS,

148 O I

OBSPLT = K , K2 K3---K n

Each K is a packed integer which defines the array pair in the
OBSTH array to be plotted:

K. = XXYY
1

where XX represents a two-digit sequence defining the. array to
be plotted as the x-coordinate. YY represents a two-digit
integer sequence defining the y-coordinate of the plotted line.
Any number of K values may be specified, each representing a
line on the plot. A plot sequence is terminated by a value:

K. = 0

A second plot sequence may be specified by simply adding values
of K:

K = XXYYi+ 1

The last value of K should be:

K = 7777

which terminates the plotting and returns program control for
new input data.

Plot Positioning. - The PLOTTR program has input parameters which
control the defining of a new frame and the position of the plot
within the frame. The parameters:

DXG and DYG

define the X- and Y- coordinates of the lower left corner of the
plot in inches with respect to the lower left corner of the cur-
rent frame. The parameters:

XMOVE and YMOVE

define the coordinates of the lower left corner of the next frame
with respect to the lower left corner of the current frame. The
frame includes all physical plotting which takes place as a re-
sult of a single set of plot instructions (defined by $PLOTIN).
Frames of data may be superimposed to accomplish certain analysis
objectives.

149

Line Type and Symbols. - The parameters, LINTYP control
the type of lines Lhat are to be drawn between the data points.
The magnitude determines the frequency of symbols and the sign
determines the combination of lines and symbols.

LINTYP = n Means a symbol is to be drawn every nth point.

If n > 0, Lines and symbols are drawn.

If n < 0, - Only symbols are drawn.

The parameter INTEQ determines which symbol is to be used by the
specification of an integer from 1 to 22. A value of 0 specifies
no symbols.

Data Scaling. - Data arrays can be scaled absolutely in terms of
the axis length 'on which they are plotted or the arrays can
be scaled relative to one another. The parameters:

XSIZE and YSIZE

specify the x- and y- axis lengths in inches. The first curve
specified (see OBSPLT) determines the scale factor and the
relative starting position for all curves on the plot. The array:

SCALEF.

specifies individual scale factors for each plot array. This
allows meaningful comparisons of multiple curve plots where the
range of the data array differs significantly.

Elimination of automatic scaling may be specified in either or
both directions by the specification:

MYX = .TRUE.
and/or

MYY = .TRUEo

If the MYX option is specified, the user must specify the scale
factor and starting value the X-axis:

SCALEX = units/inch

STARTX = inches

If the MYY option is specified, the user must specify the scale
factor and starting value of the Y-axis.

150

SCALEY = units/inch

STARTY = inches

The scale factors and start values are set by the program each
time automatic scaling (MYX and MYY = .FALSE.) is specified so
the scaling from previous cases may be used by properly setting
the option flags MYX and MYY.

Scale Annotation. - Under the automatic scaling optioh the pro-
gram generates axes of the specified length with tick marks at

one inch intervals. The tick marks are identified by numerical
values below or to the left of the axis centered on the tick.
The axes may be notated additionally by a 6-character input name
centered on the axis. One name may be input for each observation
function as follows:

OBSERVi = Ni, i = 1, NOBSER

where N. is a hollerith name of the-form, nH name, and NOBSER
is the 'number of observation functions.

Grid Generation. - A grid may be generated which represents
vertical and horizontal lines at the tick marks by the input
parameter:

GRID = .TRUE.

Title Generation. - A title from the plot may be generated by
setting the parameter:

NREM = n

where n is the number of words of the title. The program will
use the first n words of the REM array.

REM = N.; i = 1, NREM
1

and place this title at the top of the plot. The height of the
characters is in the title as specified by the parameter REMSIZ
in inches.

Auxiliary Plot Text

The plotter program has the capability of generating auxiliary
plot text by a separate case setup as follows:

$PLOTIN TEXT = .TRUE.,$

(text cards)

151

The text cards immediately follow the case data. The character
strings given on the text cards are reproduced exactly starting
the first card at a location specified by:

DXG and DYG

in inches. The character height specification is given by HTEXT.
Cards will be read and the characters plotted with line spacing
of:

1.5 * HTEXT

until a card is encountered with a numeric 2 in column 1. Con-
trol is then returned for a new case.

Virtual and Display Window

Virtual and display graphics deals with the translation of the
user's data to a physical location on the display device. The
virtual space may be of any dimension while the display space
is limited by the physical size of the display device. The func-
tion of the virtual graphics package is to map the virtual space
into the specified display area. With an understanding of the
relationship between the virtual space and the display area, the
user can freely manipulate the display to reflect his need. For
example, he can plot three different sets of data in the-same
display area or he can display the same data to different scales
to meet special needs.

The Virtual Window. - The user defines the scale (SCAL) of the
virtual window in inches and the position (DXG and DYG) in
inches with respect' to the plot device origin. Graphic lines
(vectors) and portions of lines which lie outside the virtual
window are automatically eliminated or clipped by the windowing
routines, while those which lie within or pass through the win-
dow are scaled and fitted into the appropriate portion of the
display.

The user's data area may be conceived of as existing virtually
within the computer, and is analogous to a coordinate system with
infinite dimension. The unit of measurement in virtual space is
arbitrary and representative of any unit the user wishes, from
milligrams to light years. In the case of the PLOTTR program,
the virtual window is established by XSIZE and YSIZE and includes
the plot area itself plus some margin on all sides for plot
annotation. In actuality, the virtual window is a square area
whose sides are related to the larger of XSIZE or YSIZE. In
effect, the user constructs the desired plot in virtual space
and the virtual graphics package scales the data to fit .nto the

152

desired display area. Figure 29 illustrates the use of virtual
graphics. The heavy outside border is the window which is scaled
to the specified display size SCAL.

1.53

W I PIDOI Z

jA7

I I

E M ' s a2RM

FKCUIRE 29 ILLUTAT,~ OF V'JRTUP1L GRAPHICS,

Contour Plots

PLOTTR contains a simple and rapid code for producing contour
plots of three dimensional functions. The function must be
specified in the form:

Z.ij = F(Xi,Y); i = 1,2,..M, j = 1,2,..N (1)

That is, the function must be defined over a regular grid in the

X-Y plane. Contour plots are produced on the target display

device but cannot be generated as printer plots. The resolution

of the contours is dependent upon the mesh increments in X and

Y.

Figure 30 illustrates the type of results which can be expected

from the CONTOR option. The illustrated contour data has a

"resolution" of 0.1 in X and Y.

Generation of Contour Vectors. - Suppose a function of two

independent variables is defined over the regular mesh Xi,Yj .

Then (M-1)*(N-1) rectangular boxes can be selected from the
adjacent points:

S= (Xi,Yj), (X,Yj+l (i+1' Yj+ (i+Yj)

Let the corners of any such box be identified in a clockwise
manner as illustrated below:

2 3

1 4

RECTANGULAR ELEMENT CORNER IDENTIFICATION.

Given such a rectangle, the corner points and the function values
at these corner points may also be uniquely defined by the rota-
tion shown below:'

155

SON' P 0 V . U [

(DPMX) IN 0.5 INCROENTS

0

0
:.'-

-
"-

0.5 0.1.

1.55---s.

215

21.0

5.0 1 5 "

2-G:E0 5.0STTA

- oi . . 1-0 .!- 1 ! 1i5 l i i I ! I " 1

FIGURE 30 ILLUSTRATION OF CONTOUR PLOT DATA OUTPUT,

(Xy~ (x_ y2, 1; 3)

(X 1 Z1) X2 .Z4

LOCAL COORDINATE AND FUNCTION VALUES

Now consider the possibility that a contour of value Z = Z' passes
through a given elemental rectangle. First, transform the corner
values of Z by subtracting Z' to give the modified corner values:

Z = Z - '

Z = Z -Z'2 2 (3)
Z3 = Z3 - Z'

4 4

Examining the topology of the contour line trace accross the
elemental rectangle, it follows that sixteen (16) possible types
of contour trace exist. For each modified corner value given by
three (3) is either greater than or equal to 0, or less than zero,
giving 24 topological types of trace. These trace types may be
uniquely identified by a four digit binary number whose elements
sequentially correspond to.the corner points in the clockwise
sequence of figure 31, where 1 signifies that Zi> O. These sixteen

types of trace are illustrated in figure 31 with their correspond-
ing four (4) digit binary number and contour trace type.

It can be seen that only two (2) of the element topologies result
in no contour trace. Two element topologies result in two contour
traces across the element. (These contour traces may be of
either form displayed in figure 31 for I = 1010 or I = 101.) Assum-
ing linear interpolation for Z along the elemental rectangle sides
and local straight line contour traces within the element, the
end points of the contour trace are readily found to be given by
the expressions such as:

157

0001 0010 0011 0100

0101 0110 0111 1000

1001 1010 1011 1100

1101 1110 1111 0000

FIGURE 31 RECTANGULAR ELEHENT BINARY CODE
AND CONTOUR TRACE TOPOLOGIES,

158

I = 1.010

X =X1

Ye Y1 + F(Y 1 ' Y2'Z 1 'Z 2)
1 (4)

Xe = X 1 + F(X1 'X2 ' 3' 4)

Y = Ye 2

and

I = 1110

Xe = X1 + F(X1,X2Z' Z 4

Y =Y
Ye 1 (5)

X = X 2

Ye 2 = Y1 + F(YI'Y2' Z 4 Z 3)

Where (X el,Y el) and (X 2,Ye2) are the contour trace end points

and the function F is defined by:

F(A,B,C,D) = (B - A) C

Two Ambiguous Cases. - Two ambiguous cases arise for I = 1010
and I = 101. The contours may then be of either the solid or
dotted line type in figure 32. The ambiguity is resolved when
the "fold diagonal" is defined. Thus when I = 0101, if the
principal diagonal is the fold diagonal, the dotted lines supply
the correct contour types, if the other diagonal is the fold
line, then the solid lines are the correct contour types. The
converse is true when I = 1010.

Definition of the fold line requires more information than is
available within a single elemental rectangle. Consider the case
I = 101.0 in the illustration below. In (a) the upper right and

159

lower left high elemental rectangle regions indicate a princi.p' l.
diagonal fold. In (b) the lower upper left and lower 'right cle-
mental rectangle regions illustrate a fold about the other diagonal.

X Y X Y

(a) PRINCIPAL (b) OTHER
DIAGONAL FOLD DIAGONAL FOLD

FIGURE 32 TWO ANALOGOUS CASES,

The program contains logic for resolving the ambiguous cases us-
ing the above technique. A weighted assessment of the probability
of each diagonal by the fold line is incorporated within the code.
This logic covers the possibility of any adjacent elemental rec-
tangle being absent due to edge or corner conditions in the Z.
Sarray.

Loading the Data. - The contour data is loaded into the OBSTH
array as follows:

OBSTHk; k = i, NUMP * NOBSER

where k is defined as:

k = (j - I) NUMP + i

i = 1, NUIP

j = 1, NODSER

160

Data may also be loaded from an alternate input file using the
INPUT parameter as described earlier. Two additional arrays
defining the x and y mesh parts must be loaded as:

XMESH.; i 1 i, NUMP

YMESHj; j = 1, NOBSER

*The values must correspond to the function values loaded in the
OBSTH array.

Contour Definition. - The contours desired are specified by. the
user using the following input:

NZCUTS = n

where n is the desired number of contours. The array:

ZCUTSi; i = 1, NZCUTS

defines the individual contour values.

Title and Axis. - Title and axis options are the same as described
earlier for x-y plots.

161

Program Usage

The program can be used with two online and two offline display
devices as follows:

DISPLAY DEVICE TYPE PROGRAM NAME

TEKTRONIXS Online *TEKTRON OPLOT

MOPS Online *HAZEL.OPLOT

CALCOMP Off line *CALCOMP.OPLOT

SD4060 Offline *SD4060.OPLOT

*File qualifi r is EX42-00002.

Each device uses'a different program. The data setup is
identical so far as parameter names are concerned. However,
the desired scaling value may be different because of the size
of the available plotting area for the different devices.

Each plot interface has special instructions that are particular
to the plot device. For example, the CALCOMP program requires
the mounting of a physical tape which must be named 19:

@ASG,T 19,8C, CAL

@XQT EX42-00002*CALCOMP.OPLOT

(Data)

The TEKTRONIX program requires the user to input the terminal
line speed and the maximum number of vectors per buffer load:

@XQT EX42-00002*TEKTRON.OPLOT

30 18

(Data)

The above example is for 30 characters per second line speed and
18 vectors per buffer load. No more than 18 vectors should be
specified.

The MOPS program requires the use of the function code 0 above
the keyboard before data is entered:

@XQT EX42-00002*HAZEL.OPLOT

Depress FC-0

(Data)

No special input' is required to use the SD4060 program:

162

Program Input

The basic input to PLOTTR is the $PLOTIN namelist specification.

All data except auxiliary text may be read in this form if

desired; but other forms of input may be activated in accord-
ance with the options specified in $PLOTIN.

The use of NAMELIST input was chosen for the following reasons:

1. It is a simple name oriented input easily understood

by most computer users.

2. The format is standard and does not require relearn-
ing from program to program.

3. It is easily modified by the engineer or programmer

when adding input variables to the program.

When a NA1MELIST read is encountered in the program, the entire

input file is scanned up to an end-of-file or a record with a

dollar ($) in column 2 followed by the NAMELIST name requested

by the program. No imbedded blanks may be used. Succeeding
data items are read until a second dollar is encountered signi-

fying the end of the NAMELIST input. Any data on the input

file before the requested NAMELIST is found will be ignored.
All data between the opening and closing dollar is interpr te
by the NAMELIST input routine. The data item within the NAME-
LIST statement may be in either of two forms:

V = C,

A(n) = D1 1... ,Dm'

V is a non-subscripted variable name. C is a constant which
may be real, integer, logical (T or F) or hollerith (ZHname).
A is an array name and n is an integer constant subscript,
Dl*,...Dm, are simple constants or repeated constants of the

form k*C, where k is the repetition factor. Data items and
constants must be separated by commas. For'a subscripted array.
name, the number of constants need not be equal but may not
exceed the number of array elements needed to fill the array.
More than one card may be used for input data and arrays may
be split between cards. All except the last record must end
with a constant followed by a comma and no sequence numbers
may appear. The first column of each record is ignored. The

163

set of data items may consist of any subset of the variable
names associated with the NAM2 ELTST name and the name need not
be any particular order. More details on the use of NAMELIST
are available in any FORTRAN users guide, but the above
description should be sufficient for the operation of the
PLOTTR program.

$PLOTIN Namelist Data. - This section contains an alphabetical
list of all input variables in the $PLOTIN namelist set. The
default value and a brief description of the usage of each
variable is given.

Name Default(s) Description of Input

ALTVAL .FALSE. Logical variable. If .True. data will be
read as observation functions. Otherwise
data will be read as plot arrays.

BLOCK .FALSE. Logical variable. If ,True,, binary block-
ing of the observation unit will be expect-
ed. (CDC 6600 only)

CALCOM .TRUE. Logical variable. If .True., x-y plots

will be generated. This variable is used
to activate any device to which the program
is linked such as Tektronics, SD4060 or Var-
ian.

CONTOR .FALSE. Logical variable, If .True., a contour
plot will be generated from OBSTII data
CALCOM must be set .True.

COPY .FALSE. Generate hard copy (online devices).

DIALOG .FALSE. Logical variable. If .True., data base
output routine will be called.

DXG 1.0 X-axis origin for the current chart relative
to the current device origin specified by
XMOVE.

DYG 1.0 Y-axis origin for the current chart relative
to the current device origin specified by
YMOVE.

164

Name Default(s) Description of Input

GRID .FALSE Logical variable. If .TRUE., one inch grid
will be generated on x-y plots.

HTEXT .21 Height of title in inches.

INPUT 0 Zero for reading plot data from cards .GT.0
for reading plot data from another unit.

INTEQ 1 . Integer from 0 to 22 indicating the plot
symbol.

LINTYP 0 Control parameter \4hich describes the type.
of line to be drawn through the data points.
The magnitude determines the frequency of
plotted symbols.

I.E. LINTYP=4 Means every fourth point.
LINTYP=0 Straight lines with specified

symbol at the end of the
line (see INTEQ).

LINTYP=+ Lines and symbols.
LINTYP=- Symbols only.

MYX .FALSE. Logical variable. If .TRUE., user may input
STARTX and SCALEX.

MYY .FALSE. Logical variable. If .TRUE., user may input
STARTY and SCALEY.

NAMES .FALSE. Logical variable. If .TRUE., NOBSER six-
(100) character names will be read. These are the

plot array titles.

NAXIS 1 Number of times the beam or pen will trace
the x- and y- axes.

NDECP 2 Number of decimal places used in scale
annotation.

NOBSER NONE Number of observation functions (or plot
arrays).

NPAGE 0 Page number of the plot (printer only).

NREM 0 Number of words of title to be read. If not
zero, NREM 10-character words will be read
immediately after the $PLOTIN namelist.

165

Name Default(s) Description of Input

NSKIPF 0 Number of observation function files that
will be skipped on observation unit before
starting to read data from it.

NSKIPR 0 Nunmber of observation functions to skip on
observation unit before starting to read data.

'NUMP NONE Number of plot points per plot array or the
number of observations. There is an internal
limit of 213 points.

NUMPl5 .FALSE. Logical variable. If .TRUE., NUMP will be.
read from observation unit as the first
record.

NZCUTS NONE Number of contours requested.

OBSERV BLANK Observation function names to be used for
(100) scale annotation, They are read in namelist

format as:

OBSERV=nIHnamel,nHname2,----

OBSPLT 7777 Integer definition of the plot functions.
(120) E p f .pr r.ays or ob Lrvati

functions is defined by a 4-digit number,
the first two represent the independent
variable, the second two represent the
dependent variable according to the input
order of the plot arrays or OBST functions.
A zero indicates the end of one chart. More
charts can be generated up to a limit of 120
entries in the OBSPLT array. User should
enter a value of 7777 after the last chart.

OBSTH NONE Plot data in one of the following formats.
(2000) For ALTVAL=.FALSE., plot arrays are loaded,

A(1) ,-- ,A(N) ,B(1) ,--B (N) ,C (1)--C(N)

For ALTVAL=.TRUE., plot arrays are loaded,

A(1) ,B(1) ,C() ,------A(N) ,B(N) ,C(N),

NOTE: The maximum number of plot points
is 2000 but can be changed to the
alteration of 3 Fortran statements
in main program as follows:

166

Name Default(s) Description of Input

COMMON/AESOPD/ADATA (n+l)

REALOBSTH (n)

DATA NADATA/n/

The value of n may be set to any desired
value. Program load size is altered in
direct relation to the number n.

PAGE .FALSE. Start a new frame at XMOVE, YMOVE from
previous origin.

PRINTR .FALSE. Logical variable. If .TRUE., tabulation
will be generated.

PRINTO .FALSE. Logical variable. If .TRUE., the namelist
input data will be printed.

REM BLANK Title to be placed at the top of the chart.
(30) It is read .in namelist format as:

REM=nH title of plot,

REMSIZ 0.21 Height of title in inches.

REWIND .FALSE. Logical variable. If .TRUE., observation
unit will be rewound before reading it.

SCAL 7.5 Size of the plot device window in inches.
Virtual plot specified by the maximum of
XSIZE and YSIZE will be scaled to this
dimension.

SCALEF 1.0 Scale factor array. One for each plot array
(100) or observation function. It is used to scale

one plot array relative to the others for
plot purposes but does not affect the
original data in OBSTH.

SCALEX 1.0. Units per inch for X.

167

Name Default(s) Description, of Input

SCALEY 1.0 Units per inch for Y.

STARTX 0.0 Starting value for X-axis.

STARTY 0.0 Starting value for Y-axis.

STOP .FALSE. Logical variable. If .True., program will
stop without generating additional plot
information.

TEXT °FALSE. Logical variable. If .True,, card images
will read and plotted scaling will be in
accordance with the following formula:

6*NREM*PHTEXT/SCAL

XMESH None Array of points defining the X-axis of a
(100) contour plot.

XMOVE 8.5 X-distance between plot origins. For on-
line devices, a screen erasure is affected.

XORIGN 1.0 X--axis origin for the current chart relative
to the current device origin specified by
XMOVE.

XSIZE 6.0 X-size length in inches for virtual plot.
It also specifics number of scale (and grid)
divisions which will be employed. Origin is
moved before plotting if the PAGE option is
involked.

YMESH None Array of points defining the Y-axis of a
(100) contour plot.

YMOVE 0.0 Y-distance between plot origins. For on-
line devices, a screen erasure is affected.

YORIGN 1.0 Y-axis origin for the current chart relative
to the current device origin specified by
YMOVE.

.L C8

Name Default(s) Description of Input

YSIZE 8.0 Y-axis length in inches for virtual plot.
It also specifies number of scale (and grid)
divisions which will be employed. -Origin
is moved before plotting if the PAGE option
is involked.

ZCUTS None Values of the contours.
(25)

169

Physical Characteristics

The basic PLOTTR program is written in Fortran language and
interfaced to the four plot devices as illustrated in figure
33. The control program subroutines reference the CALCOMP
subroutines AXIS, SCALE, NUIMBER, SY.MlOL and LINE. These
routines have been modified slightly to call PLTT (rather than
PLOT). All display device interface is accomplished through
the single driver PLTT. PLTT has three basic entries-,

Initialization

Plotting

Termination

which perform special functions depending upon the device
interfaced. The windowing and clipping package is called
by PLTT at the "plotting" entry. The data is scaled to the
specified window size and vectors outside the window are
deleted or modified.

Program Loading

The piogram is overlayed to execute in approximately 20,000
decimal but the size varies with the interface software require-
ments. The four program sizes are shown below:

TEKTRONIX 19400

CAi.COMP 20100

SD4060 21400

MOPS 18700

The construction of the program requires the following control
cards:

@QUAL EX42-00002

@COPY,R * PLOTTR

@MAP file .OPLOT,OPLOT

The basic plot software resides on the file EX42-00002*PLOTTR.
There is a file containing interface software for each hardware
device. The file used depends .upon the interface. Map direct-
ive elcments are al.so stored on the interface files;

170

CONT. OL

PROGRAM

AXIS.

NUMBER SCALE

LINE SYMBOL

TEKTRONIX- ALL OTHER DEVICES
PLTT PLTT

TEKTRONIX
INTERFACE
PACKAGE WINDOWING

CLIPPIN
PACKAGE

HARDWARE

CALCOMP MOPS SD4060
PLOT(STD) PLOT(INT) PLOT(INT)

SMTOPS SD4060
INTERFACE INTERFACE

HARDWARE HARDWARE

FIGURE.33 PLOTTR INTERFACE.

ORIGINAL PAC7aL7
OF POOR QUAL 171

TEKTRONIX EX42-00002*TEKTRON.OPLOT

CALCOMP EX42-00002*CALCOMP. OPLOT

SD4060 EX42-00002*SD4060.OPLOT

MOPS EX42-00002*HAZEL.OPLOT

The TEKTRONIX map directives are illustrated below:

LIB *TEKTRON ,*TEKLIB.
LIB *TEKTRON. ,*TEKLI.
NOT TPF$. P .LNLN
NOT TPF$,NOGRAF
NOT TPF$.DMPBUF
NOT TPF$,XYCNUT
NOT TPF$. MOVEA
NOT TPF$. DiRAWA
NOT TPF$VECMOD
NOT TPF$,SCRENE
NOT TPF$. IIDCOPY
NOT TPF$o PLTT
NOT *TEKLIB CHARS
NOT *TETLIBT, CHARS/TEKPLOT
NOT'I' 'TEl Ki Li 'IKC
NOT IM2AGE
SEG MAIN
IN PLOTJTR
SEG AA*
IN CONPLT
SEG BB* o (1,AIN)
IN THROBS
SEG BBl*. (BB)
IN HPLNLN
SEG BB2*. (BB)
IN PPLNLN
END

Map directive elements for the other three device interfaces are
shown in figure 34

.72

.. :t 'T IMAGE

1K I rNPL.T (A) CALCOMiP,

:1. THRO1B:--

12:1H FFLHLN
14 :EHD

1 IF:B .C:D4 O'0 MSCCLflCAL 113 MSC*F-LTLlP1

2 :LIF MI.C*LJC:AL TB ,MS~i>LTL IF: *:7140'6,
3:NQT IMIAGE

4 3E' MAFIN
WINK F'LfTTR
WSE: :Fi
7:1K CflFL.T (B) SD4iO6O.

:FI_ BB*9(MAIN ti
:1K THRO:-.

1 :J-EGBPi
11 :I HPHLfNLl
12 :SE' BD;F * I

1:3I P1K FLH
14 :EKTI

1 :LI 11: 1- A El
2:t1T IMAG3E

HODT HR2ZEL .IIOE2
4 :OT HF4ZEL .. 'RIl
5 ::3E: MRi 1I H
WIN PLOTTR. (C)E ANlPS

1 C J THROB::-..

12I I PLNLH
13:E Fi 1S'.P 13F

iN PPI L HLi'H
15WH 1

FIGURE 34 NAP ELEMIENTS FOR PLOTTRI,

OIIGMJAXJP~ 173
~ PORQUA~

RDPRO: POST PROFILE TAPE READ PROGRAM

RDPRO is a small computer code designed to selectively read
and dump tapes that are produced by the large and complex POST
program. POST is a generalized point mass targeting and optimiza-
tion program for powered or unpowered vehicles. The operation
of POST is described in reference 32. The nominal method of
operation of POST is to produce a printed report, a subset of
which is placed upon an output for the processing by RDPRO,

Upon execution RDPRO expects from the card reader (terminal
if demand) a set of directives in namelist form. It then reads
the POST output tape and selectively extracts the desired para-
meters which are then placed upon a temporary secondary unit
for introduction into an EDIN technology data base. They may
also be listed if so desired.

Program Usage

Having established a profile tape using the POST program, a
user can call on the RDPRO program to reformat the data to that
of the EDIN data base. Shown below is a list of input parameters
which are read in the INPRT namelist data.

PROFIL Logical unit number of the POST output tape.
Default is 1.

AAMURS An array of hollerith names that are the desired
variables to be extracted from the PROFIL tape.
The default list is TIME, ALTITO, VELR, GA.'TMAR,
PITI, WPROP, THRUST, ASMG, INCPCH and DYNPo

NUMVRS Number of named variables being extracted.
Default is clearly 10.

IPRO The print flag. Equal to zero produces a listing,
non zero - no listing. Default is non-zero.

CTTM A two (2) word array defining the bounding times
for the extracted data. Default is 0., 1.E10.

NMLIST The unit number for temporary storage of the
extracted information.

MOVE The number of cases to skip before beginning an
extraction run. POST cases may be stacked on an
output tape.

Example Input.

$1NPRT NUMVRS=3, CTIMEE=0.,100 $

174

This extracts only time, altitude and velocity for the first
100 seconds of the launch sequence.

Program Output

Figure 35 is a logic/data flow of how RDPRO was used to produce
the six plots seen in figure 36 These data are a real life
case study of launch of the S0147B Shuttle using J2S engines.

175

POST

DATA
k IAPL

EXDTRACTION RDPRO
NAMES

PLOTTER

O POOR LQUAL",T!

FIGURE 35 USE OF RDPRO TO GENERATE
TRAJECTORY PLOTS

1.76

_ - - .__,,. I i

,, .

-1 7

T1H I V 1 IXIU

FIGURE 36 ILLUSTRATION OF TRAJECTORY PLOTS

1177

OF

FIGURE 36 ILUSTRATION OF TRAJECTORY PLOTS

177

OF' pOOR Q3LI

SFIT: A SURFACE FITTING PROGRAM

The SFIT program defines surfaces for objects that have a
plane of symmetry. It was developed for the purpose of
generating and/or modifying fuselage type surfaces. A
parametric cubic patch method is used to define the surface
over a set of cross sections that the user in the form of
corner point geometry.

Program Description

The SFIT program can be used to generate new fuselage type
surfaces or to modify existing surfaces. The surfaces must
be symmetric about the X-Z plane with the X axis positive in
the aft to forward direction and the Z axis positive in the
bottom to top direction. The user defines the surface shooe
by means of cross section definitions. If the surface is to
be a modification of existing geometry, the station at which
the modification is to begin and the station at which the
modification is to end are input to SFT. The program then
interpolates the existing surface geometry data and defines
the cross sections at the ends of the segment to be modified.
The user, whether describing new surfaces or modifying old
geometry, inputs a series of cross section definitions in a
fore to aft sequence, Because of the symmetry restriction,
only one half of the cross section needs to be described, The
description must include the X axis station of the cross section,
a set of points (up to 40) which lie on the cross section and
the number of points in the set. The points are defined by
their Y,Z coordinates and are input in a bottom to top order,
Figure 37 depicts the coordinate system and some cross section
definitions,

The SFIT program uses a version of the Coons Bi-Cubic Parametric
.Patch Method to generate the surface. This method requires
that the area to be fitted be bounded by four curves as shown
in figure 38, SFIT uses the cross section definitions and a
combination of spline fitting and LaGrange interpolation
methods to generate the parametric boundary curves.

In order to insure a good surface fit, the area between each
cross section is divided into nine sections, or patches. Each
patch requires a set of' boundary curves as mentioned above. The
boundary curves labeled Ul and U2 in figure 38 can be conveniently
constructed from the user supplied cross section definitions.
First each cross section definition is expanded to ninty points
by spline fitting :for intermediate points. The total length of
the cross section definition is computed and the ten brcakpoints
required to divide the cross section into nine equal length

Z-AXIS

STATION 3 - Y-AXIS

STATION 2 -

STATION 1_

X-AXIS

FIGURE 37 SFIT COORDINATE SYSTEM DEFINITION.

179

X

x

Y

FIGURE 38 SURFACE BOUHNDARY CURVES

ORIGINAL PAGE]a
180 OF POOR QUALITY

segments are computed. These line segments become the U bound-
ary curves for the nine surface patches between cross sections.
For example, segment one from cross section one and segment one
from cross section two are used as Ul and U2 in the first sur-
face patch between the two sections.

After each cross section has been divided into nine equal length
segments and the segment breakpoints for each cross section
recorded, the V curves can be generated. Each V curve is de-
fined by fitting a curve through a group of data points. This
group of points consists of one segment breakpoint from each
cross section. For example, the curve labeled Vi for the first
patch in a section is defined by a curve fitted through the
first segment breakpoint from every cross section; the curve
labeled V2 for the first section fits the set of points consist-
ing of the second segment breakpoints from every cross section.
Now that the U and V boundary curves are defined, the surface
can be fitted by the parametric cubic method.

The SFIT output is in the form of cornerpoint geometry with
status indicators to indicate start of section, start of com-
ponent and end of component. The output geometry can be used
for display and analysis just as Gentry geometry is used.
Figures 39 and 40 are examples of SFIT modified geometry and
new geometry.

Program Usage

Control Cards. - The program case data is proceeded by the con-
trol cards required to retrieve the WAB program from permanent
storage and execute the program. The control cards needed to
use SFIT at Johnson Spacecraft Center are:

@RUN RUNID,ACCOUNT,ORGANIZATION

@QUAL EX42-00002

@USE 8,OUTPUT FILE

@XQT *WAATS2.OFIT

{ SFIT DATA }

@FIN

Program Input

The SFIT program accepts three types of input data:

1. Geometry Modification Data in NAMELIST Format (SIN).

2. Cross Section Data in NAMELIST Format ($SECT).

181

SO147B FUSELAGE

MODIFIED SO147B FUSELAGE

ORIGINAL PAGlE M
OF POOR QU iTE

FIGURE 39 GEOEIITRY iODIFICATIOf WITH SFIT.

182

PLAN VIEW

7OWAL' PAGE
T oor QUAtI-

FIGURE 40 SURFACE FRON ARBITRARY SECTIONS,

183

3. Cornerpoint Geometry in Fixed Format.

These input sets may be combined in various ways depending upon
the input parameters in $IN. The input sets are described below.

$IN Inputs. -

NAME DESCRIPTITON DEFAULT

FLAG Geometry Modification Flag 0.

=1, Existing Geometry is to be Modified.

=0, New Geometry is to be Created.

START Station at which Region of Geometry Modi- 0.
fication is to begin.

END Station at which Region of Geometry Modi- 0.
fication is to End.

$SECT Inputs.

NAME DESCRIPTION DEFAULT

STA Station at which Cross Section is being 0.
Defined.

NPTS Number of Points in Cross Section Defini- 0.
tion.

Y Array of Y Coordinates of the 'NPTS' Points. 0.

Z Array of Z Coordinates of the 'NPTS' Points. 0.

Program Flow Logic

Figure 41 gives an overview of the SFIT program flow.

Program Output

The program output consists of cornerpoint geometry. This
geometry is defined by a set of points in three dimensional
space. The sets of X,Y,Z points are the cornerpoints of
quadrilateral elements which define the surface. An additional
parameter is attached to each set of coordinates. Thijs para-
mInter is a status flag which indicates if the point is the first
poinL of a component, first point of a section, last point of a
component or none of these. The output goes to data set eight
(8) which may be user assigned.

SSTART

READ

SNNEW

READR
SSECT

$IN

SURFACE

ADATATA

DATA

. EOFY FLAG

YESEND

REA
O NO

IAVE STA(N) FLAG=T

SEC(USING S UITCE

NIT S2=N +START I N1=N

ORIGN=NNA1 PA- S NTAT I NON

ED F YESEND
READ

NO $SECT
DATA

GENERATE SURFACE WRITE
FROM STA(N1) TO SURFACE O
.STA(N2) USING , UNIT 8
ALL N STATIONS
AS BLENDINGJ

Q R.BUTORS EOF

SAVE STA(N.

SURFACE O NO
NIT 8

ftIGWNAE PA n CUT8SAVE STA(N

OF POOR QUALITM N=N+1

FIGURE 41 SI11'1PLIFIED FLOWCHART OF SFIT POGRAl.
185

SIZER: A PRELIMINARY SIZING PROGRAM FOR

LAUNCH VEHICLES.

The SIZER program performs preliminary sizing for a launch
vehicle composed of up to ten stages. User inputs of payload,
specific impulse of each stage, ideal. velocity of each stage
and mass fraction of each stage are required. Program results
are based on the ideal velocity equation,

V = g.Isp-ln(MR)c

where MR is the ratio of the mass of the vehicle at the start
of the stage to the mass of the vehicle at the end of the stage,
Isp is the specific impulse and g is gravitational acceleration.
It should be restated iat SIZER gives a preliminary sizing
estimation based upon ideal velocity relationships; no drag
losses or gravity losses are included. SIZER outputs a summary
which presents the sizing information for each stage.

Program Description

The SIZER program uses the ideal velocity equation

V = gIspln(MR)

to perform preliminary sizing of an n stage launch vehicle.
SIZER requires the user to define the following inputs:

n Number of Stages.

Wpay Payload of Vehicle

Isp Specific Impulse of each Stage.

V Ideal Velocity of each Stage.

x' Mass Fraction of Each Stage.

These inputs, when applied to the ideal velocity equation,
determine the total weight of each stage of the boost vehicle.
The vehicle is sized from the top down so that the payload of
a stage is the sum of the weights of every stage above it.

The stage weight solution can be determined as follows:

Ws
MR -

We

where Ws is the weight at the start of the stage and We is the
weight at. the end of the stage. These weights can be expressed
as1

186

Ws = Wpay + Winert + Wprop
and

We = Wpay + Winert.

where Winert is the inert weight of the stage and Wprop is
the stage propellant weight. Now, the mass fraction, X', is
defined to be:

'= Wprop
Wprop + Winert

so that:

Winert= W - Wprop = Wprop (1 - X')

The start weight and end weight can then be expressed as:

We = Wpay + WpX1

and

We = Wpay + Wprop (1 - A')

The mass ratio then becomes:

MR = X'Wpay + Wprop
A'Wpay + Wprop(l - A')

The ideal velocity equation can be written as:

In(MR) = V K
gIsp

or
K

MR = e .

After substitution, it can be seen that:

Wprop 'Wpay(e K-1)Wprop =
K

1 - e (1-')

The inert weight, Winert, can now be computed from the mass
fraction equation. The total stage weight is the sum of the
inert and propellant weights, and the stage sizing is complete.

This process is repeated for each of the n stages and both
printed output and EDIN data base output is provided. This
output will be discussed in the following section.

187

Program Usage

Control Cards. - The program case data is preceeded by the con-
trol cards required to retrieve the SIZER program from permanent
storage and execute the program. The control cards needed to
use SIZER at Johnson Spacecraft Center are:

@RUN RUNID,ACCOUNT, ORGANIZATION

@QUAL EX42-00002

@XQT 'WAATS2.OSIZER

SIZER DATA

@FIN

Input Procedure

SIZER accepts input data in NAMELIST format ($IN). Data names,
descriptions and default values are defined as follows:

NAME DESCRIPTION DEFAULT

PAYLD Vehicle Deliverable Payload - Lbs. 150000.

NSTAGE Number of Stages -- 10 Max. 2

VIDEAL Array of Ideal Velocities - 1 per 8380,,21293.,
Stage

XLAMDP Array of Mass Fractions - 1 per .9,o9,
Stage

XISP Array of Specific Impulses -- 1 per 296.,455.,
Stage

WPEST Array of Estimated Propellant - 1 2.E6,1.E6
per Stage

CFACTR Convergence Factor 1.

LU Data Set Number for EDIN Output 14.

Flow Logic

Figure 42 shows the flow logic for the SIZER program.

Program Output

The SIZER program outputs two types of output. The first type
of ouLput consists of a sizing report which represents the
sizing parameters broken out for each stage. Figure 43 shows
an example of this output for a two stage vehicle. The second

188

START

READ
$IN
DATA

N=NSTAGE

COMPUTE
STAGE(N)

SIZE

N=N-1

NO
N=NO PAYLOAD=PAYLOAD+STAGE(N+1)

YES

WRITE
OUTPUT TO

USER

W R I T E

OUTPUT TO
UNIT 14

EXIT

FIGURE 42 SIliPLIFIED FLOWCHART OF SIZER PROGRAll,

189

' , i ,, ..

.. I- -I 1. I -:

F i " " i i ": " '

1.90 .9 RIGINA PAGIa-
OF POOR QUALIT%

type of output consists of the computed sizing parameters being
added to the EDIN data base. The output is sent to the data
set specified by the variable LU in the $IN namelist input.
This data includes propellant weight, inert weight, start burn
weight, end burn weight and payload of each stage. The names
WPR, WI, WSB, WEB and WPL are attached to the output to the
EDIN data base.

191

TANK: A PRELIMINARY TANK DESIGN PROGRAM.

The TANK Program is a highly interactive technology module
designed for use in a preliminary tank design. The program will
generate combined exidizer and fuel tank design characteristics
from input specifications. The program can operate in the
batch or demand mode. In the demand mode the program requests
data elements by name and short definition. In addition, an
option to generate cornerpoint geometry in Gentry format,
reference 27 , is provided for image viewing and geometry mani-
pulation. User inputs to the program include design criteria
such as an O.F. factor, total propellant weight, stress factors,
tank thicknesses, etc.

Program Description

The TANK Program utilizes standard engineering algorithms for
the calculation of design characteristics. Standard engineering
nomenclature and units for the derivation and output of data
are used. Program organization is illustrated by the simplified
flowchart in figure 44.

The required tank volumes are computed as a function of propel-
lant :-atios and ullage requirements. Standard hoop stress
equations are used to compute tank thickness estimates. The
elliptical cap thickness is determined as a percentage of the
cylindrical thickness. Tank weights are based on the specific
weights of the material chosen for the tank. Total weight esti-
mates are based on accessory estimates, tank weights and propel-
lant weights. Tank lengths are computed as a function of the
total volume requirements.

An option to generate cornerpoint geometry in Gentry format is
provided for image viewing. If selected, the program will read
all previously generated data in addition to user inputs for
intertank separation and the number of X-stations per tank cap.
These data are used to generate the tank geometry. Once com-
plete, the geometry is available on Unit 8.

Physical Characteristics

The physical characteristics of the TANK Program are summarized
as follows:

HOST COMPUTER: UNIVAC EXEC 8 (1110)

PROGRAM FILES: EX42-00002*WAATS2. (SOURCE, RELOCA-
TABLES, ADSOLUTE)

EX42.-00002*WAATIS2. (MiAP .ELEMENT)

192

USER INPUTS

INITIALIZATION

COMPUTE OX/FUEL DISTRIBUTION

COMPUTE VOLUMES1 - -
COMPUTE INTERNAL STRESS

FOR CYLINDER & ELLIPSE CAP

COMPUTE THICKNESSES
COMPUTE SURFACE AREAS

COMPUTE: PROPELLANT WEIGHTS
TANK WEIGHTS
ACCESSORY WEIGHTS

COMPUTE TANK LENGTHS

COMPUTE MASS FRACTION1

PRINT DATA
AND STORE
-ON UNIT 14

GEOMETRY
OPTION ES

READ DATA AND

NO FORMAT GEOMETRY
ON UNIT 8

FIGURE 44 SIMPLIFIED TANK PROGRAM FLOW CHART,

193

ABSOLUTE ELEMENT: OTANK

LANGUAGE: FORTRAN V

PROGRAM SIZE: 6950 DECIMAL

CARD SOURCE: +425

Program Usage

The computer program usage requirements described in this section
are generally orientated toward the Exec 8 1110 version and
speci ically towards the Johnson Spacecraft Center installation.
The actual program input requirements described are applicable
wherever the program is installed but the control cards for the
retrieval and execution of the program will differ from computer
to computer. A typical runstream for TANK is illustrated below:

ID ACCOUNT NUMBER ORGANIZATION

@RUN AB7.23, 1230C-IO88-C, EX42-00002

@ASG,T 14. Assign Output File 14

@ASGT 8. Assign Geometry Output File 8.

@XQT EX42-00002',WATS2.OTANK

data input
data input

@FIN Termination

Program Input. - The following is a listing of the required in-
puts for a TANK program execution. Since the inputs are made
in response to a program inquiry, only the inquiries are shown.

ENTER AN OoF. RATIO (Computer)
(decimal. entry) (User)

ENTER 1 IF LOX/LH SYSTEM, ENTER 2 IS OTHER (Computer)
(integer entry) (User)

ENTER YOUR TOTAL,PROPELLAN T REQUIREMENTS - LBSo (Computer)
(decimal entry) (User)

194

IF A 2 IS ENTERED THE PROGRAM WILL ADDRESS THE USER AS FOLLOWS:

ENTER SPECIFIC WEIGHT OF OXIDIZER - LBS/CU IN (Computer)
(decimal entry) (User)

ENTER SPECIFIC WEIGHT OF FUEL - LBS/CU IN ', (Computer)
(decimal entry) (User)

ENTER % ULLAGE OXIDIZER (Computer)
(decimal entry) (User)

ENTER % ULLAGE FUEL (Computer)
(decimal entry) (User)

ENTER MAX OXIDIZER PRESSURIZATION (Computer)
(decimal entry) (User)

ENTER MAX FUEL PRESSURIZATION (Computer)
(decimal entry) (User)

ENTER MAX TANK DIAMETER (Computer)
(decimal entry) (User)

ENTER AN OXIDIZER TANK STRESS S.F. (Computer)
(decimal entry) (User)

ENTER A FUEL TANK STRESS S.F. (Computer)
(decimal entry) (User)

ENTER TYPE ELLIPSE CAP-DEG (Computer)
(decimal entry) (User)

OX TANK MATERIAL: ENTER 1 FOR AL, 2 FOR TI,
3 FOR OTHER (Computer)

(integer entry) (User)
FL TANK MATERIAL: ENTER 1 for AL, 2 FOR TI,

3 FOR OTHER (Computer)
(integer entry) (User)

IF A 3 IS ENTERED THE PROGRAM WILL SOLICIT INFORMATION FROM USER
AS FOLLOWS:

ENTER OXIDIZER TANK MATERIAL SPECIFIC WEIGHT -
LBS/CU IN (Computer)

(decimal entry) (User)
ENTER FUEL TANK MATERIAL SPECIFIC WEIGHT - LBS/CU IN (Computer)

(decimal entry) (User)
ENTER OXIDIZER TANK MATERIAL ULT STRESS - LBS (Computer)

(decimal entry) (User)
ENTER FL TANK MATERIAL ULT STRESS - LBS (Computer)

(decimal entry) (User)
ENTER % EST WEIGHT OF OXIDIZER TK ACCESSORIES (Computer)

(decimal entry) (User)
ENTER % EST WEIGHT OF FUEL TK ACCESSORIES (Computer)

(decimal entry) (User)
ENTER 1 TO GENERATE DESIGN POINTS (Computer)

(integer entry) (User)
ENTER NO OF X STATIONS PER CAP (Computer)

(decimal entry) (User)
ENTER TANK SEPARATION (Computer)

(decimal entry) (User)

195

Program Output. - In addition to the formatted geometry which
is output by TANK, the following data is output to the printer
and to Unit 14.

O.F. RATIO

TYPE OF OXIDIZER

TYPE OF FUEL

SPECIFIC WEIGHT OF THE OXIDIZER

SPECIFIC WEIGHT OF THE FUEL

OXIDIZER TANK MATERIAL

The EDIN data base output is written on Unit 14 and contains
the following information:

SA An array of two elements containing the surface
areas for the oxidizer and fuel tanks.

LT Array of two elements containing the lengths of the
oxidizer and fuel tanks.

VOL Array of two elements containing the total volume
of the oxidizer and fuel tanks.

WP Array of two elements containing the propellant
weights of the oxidizer and fuel tanks.

WTK Array of two elements containing the weights of
the oxidizer and fuel tanks.

WAC Array of two elements containing the accessory
weights of the oxidizer and fuel weights.

WTOT Array of two elements containing the total weight
of the oxidizer and fuel tanks.

196

VL70: A PROGRAM FOR READING AERODYNAMIC

DATA TAPES.

VL70 is a general purpose utility program designed to extract
and reformat specific incremental aerodynamic information from
standard aerodynamic data tapes. Input to the program is name-
list and the program can be executed in batch or demand. Out-
put of the program consists of formatted data which can be
easily interfaced to existing EDIN application software.

Program Description

The basic structure'of the VL70 program is illustrated by figure
45 . The program is drawn by a schedule which provides the
following data:

Mach Number.

Angle of Attack (nominal, upper and lower).

Limit Body Flap Deflections.

Limit Elevon Deflections.

Limit Rudder Deflections.

Data File Numbers.

Independent Variable Names.

Dependent Variable Names.

The schedule is usually divided into three parts; (1) the speed
brake deflection schedule, (2) the body flap deflection and (3)
the elevon deflection schedule. Each part reflects the Mach
number, the angle of attack range, control deflections and file
number.

The schedule of deflections is described to the computer by a
series .of 5 x 14 arrays (five deflection conditions and 14 Mach
numbers). The deflection conditions represent speed brake
deflections, elevon deflections and body flap deflections.

In addition, the alpha schedule is described as three (3) de-
flections at each of the fourteen (14) Mach numbers. The three
(3) deflections represent the nominal, a high alpha and a low
alpha.

For each deflection condition there is also a schedule of file
numbers and independent variable names. These names, which
ultimately become EDIN data base names, are not presented here-
in but may be obtained from the program listing.

The nominal schedule may be overridden by input in the $INPT
namelist as described by the section on program usage.

197

START

SCHEDULE

ALPHA --
DEFLECTIONL _, $INPT
FILE NOSo READ

ETC . - -

DETERMINE FROM
SCHDTL74Tf TTE T T r

FILE NO. AND
FLIGHT CONDIT.ONS

SEARCH DATA. ERO
FILES FOR -- FI.
PROPER DATA F /

- m _ OPTIONAL
< 1 PLACE DATA

r ON EDIN DATA EDIN\
OHOUTPUTr,
A, FILE IN r\
SE- DATA BASE FORMAT -

INTERPOLATE FORI- EDIN\
AERO DATA INCREMENTSI (OUTPU

INCREMENT THE E _-

MACH NUMBER ' UTPPT
[..

END

-FIUbL U L VL70 PROGRAM' STRUCTURE

19 8 ORIGINAL PAGl i
OF POOR QUALUT

Physical Characteristics

HOST COMPUTER: UNIVAC EXEC 8 (1110)

PROGRAM FILES: EX42-00002*ODIN-ROMER.ANALYl (Relocatable)

EX42-00002*ODIN-ROMER.ANALY1 (Source)

ABSOLUTE ELEMENT: ANALY1A

LANGUAGE: FORTRAN V

PROGRAM SIZE: 10000 DECIMAL

CARD SOURCE: + 1257

Program Usage

The computer usage requirements described in this section are
generally orientated toward the Exec 8 1110 computer and speci-
fically towards the Johnson Spacecraft Center installation.
The actual program input requirements described are applicable
wherever the program is installed by the control cards for re-
trieval and execution of the program will differ from computer
to computer. A typical run stream for VL70 is illustrated below:

ID ACCOUNT NUMBER ORGANIZATION

@RUN AB123, 1230C-I088C, EX42-00002

@ASG.,T 14. Assign temporary Unit 14 for output.

@XQT EX42-00002*ODIN-ROMER2-ANALYlA Execute Core.

$INPT

$ Namelist Input.

@FIN Termination Card.

Program Input. - The VL70 program input is namelist ($INPT) and
is defined by figure 46

Program Output. - The VL70 program uses temporary Unit 14 as
an output file. Figure 47 illustrates a typical output from
BASAERO. The output will consist of interpolated values of
aerodynamic data based on input specifications for file numbers
and named variables.

199

$INPT NAMELIST

JMACH Schedule counter used to identify the current
position in the deflection schedule.

MFILE Maximum number of files to search for Aero Data.

ALPHAS(3,14) Nominal upper and lower Alpha schedule for 14
Mach numbers.

DEFLEC(5,14) Schedule of deflections for 14 Mach numbers in
schedule.

1 - Speed Brake Schedule.

2 and 3 - Fore and Aft Elevon Schedule.

4 and 5 - Fore and Aft Body Flap Schedule.

CMFILE(5,14) Schedule of pitching moment file numbers for 14
Mach numbers as described above.

CLFILE(5,14) Schedule of lift coefficicnt file numbers for
14 Mach numbers as described above.

CMXYZ(3,5,15) Sequence of independent variables (same for CM
and CL) used in the tabulation of aerodynamic
data on the CM and CL files.

CNAMES(5,2) Dependent variable names assigned to the
interpolated data from the Aero File.

FIGURE 46 INPUT DESCRIPTIONS FOR VL70,

200

I . I .j I_** A Ii j

I... ' ""'ir I~ : :: . i l -" .. . ",i -: j i:: : i" l:: 1, I- _' -. : ° ii:: -
"
.- ,.'i"

V-..

&UP

I- i.-..
. .. .

:IGU i7 OUTPUT -R-'- "O•i : i:,: : "' ' ' '"': ' '! " ' :! :: i - tI~

:i:;.:i...'i!hL i i iL~ - .: : :::. ' . .~ r ! : : :': ' :: i: :. l':,:: : : !:' :

FIGURE 47 OUTPUT FROtMl VLTO PROGRAM,

to
c9-

WAB: A PROGRAIM FOR CO MPUTING WEIGHTS

AND BALANCES.

The WAB program computes the volume, .rea and mass properties
of a structure. The structure can be defincd as a surface
form, a set of black box components or a combination of both.
Surface form definition is in the form of corner point geometry.
WAB outputs include a mass property summary and EDIN data
base additions.

Program Description

The WAB program computes volume, surface area, frontal area,
weight, center of gravity, moments of inertia and products of
inertia for bodies whose surface shapes are composed of a num-
ber of quadrilateral elements. The cornerpoints of the quadri--
lateral elements are defined by ordered sets of X,Y,Z coordinates,
Computation of mass properties requires that some characteristics
of the surface material be known, such as surface thickness and
material density or weight per unit of the surface area. Also,
if the coordinate system that the mass properties are referenced.
to is different from the coordinate system that the surface
cornerpoints are defined in, then the Euler angles for the
coordinate system transformation must be specified. Basically,
WAB computes all of the attributes listed above for each quadri-
lateral element, transforms these to the reference system and
sums for all the elements to arrive at the total mass pr.operties
of the body.

The problem of computing the properties of the quadri lateral
element is greatly simplified by splitting the quadrilateraj
into two triangular elements with a common side being one of
the diagonals of the original quadrilateral. Formula for com-
puting the area, center of gravity, moments of inertia and
products of inertia of a triangular element of finite thickness
are easily derived or may be found in most physics handbooks.
The element's mass properties are computed in a temporary
coordinate system which has its X axis colinear with the base
of the triangle, its Z axis normal to the plane of the triangle
and its Y axis completes the right handed triad with the system
origin at a corner of the triangle. All that remains to be
done is to rotate the inertia tensor into a coordinate frame
that is parallel to the reference frame and then translate to
the reference system origin by the parallel axis theorem. At
this point the mass characteristics of the triangular element
are defined with respect to the origin of the reference coordin-
ate system. This process is repeati-.ed for the other triangular
element that comprised the original quadrilateral. and the
properties are summed. Every quadrilateral element of -he sur-
face is processed and its properties tummied in the same :.ashion.
After all of the surface shape has been processed, the center

202

of gravity for the entire structure is computed and the moments
and products of inertia of the body about its center of gravity
are computed by the parallel axis theorem.

The volume enclosed by the body is computed by accumulating the
volumes capped by each triangular element. This is done by
projecting the area of each element onto the X-Z plane and
multiplying this area times the distance of the element's cen-
troid from the X-Z plane. If the outside normal of the element
is away from the X-Z plane, the elemental volume is added to
the sum; otherwise it is subtracted.

The WAB program also accepts "black box" inputs to the mass
properties accumulations. Weight, center of gravity location
and the inertia tensor may be input as black box characteristics.
The program is capable of handling any number of components
whether defined by surface form data or black box form data and
the forms may be intermixed.

Program Usage

Control Cards. - The program case data is preceded by the con-
trol cards required to retrieve the WAB program from permanent
storage and execute the program. The control cards needed to
use WAB at Johnson Spacecraft Center are:

@RUN RUNID,ACCOUNT,ORGANIZATION

@QUAL EX42-00002

@XQT *WAATS2.0OWAB

WAB DATA

@EOF

@FIN

Input Procedure

The WAB program accepts three types of input data:

1. General information data in NAMELIST format ($IN).

2. Black box definition data in NAMELIST format ($BOX).

3. Surface cornerpoint data in fixed format.

These input sets may be combined in various ways depending upon
the input parameters in $IN and $BOX. This section describes
the input data requirements.

203

SIN Input Set. -

NAME DESCRIPTION DEFAULT VALUE

IREFL Symmetric Geometry Indicator. 0
= 1, Surface Shape or Black Box

Has a Symrinetrical Counterpart on
Other Side of X-Z Plane.

= 0, No Symmetrical Counterpart.

DELX X Distance between Reference System and Input 0.
System.

DELY Y Distance between Reference System and Input 0.
Syste .

DELZ Z Distance between Reference System and Input 0.
System.

PSI Yaw Euler Angle for Input to Reference System 0.
Rotation.

THETA Pitch Euler Angle for Input to Reference 0.
System Rotation.

PHI Roll Euler Angle for Input to Reference 0.
System Rotation.

BLKBX Black Box Input Data Indicator oFALSE.

= oTRUE., Input Data will Come from $BOX
= FALSE., Input Data Will be Fixed Format

Surface. Form.

IWRITE EDIN Data Base Output Request 0

=1, WAB Outputs Will be Added to EDIN Data
Base.

= 0, No Additions to Data Base.

FACL Conversion Factor for Units of Length. 12.

FACI Conversion Factor for Inertia Tensor 1.

SUB Subtraction Flag. .FALSE.

= .TRUE., WAB Properties of the Next Sur-
face or Black Box will be Sub-
tracted from the Accumulative
Totals.

204

NAME DESCRIPTION DEFAULT VALUE

= .FALSE., WAB Properties of the Next Sur-
face or Black Box Will be Added
to the Accumulative Totals.

RHO Density of the Surface Material 1.

H Thickness of the Surface Material 1.

NAME A Six Character Hollerith Name that is NONE
Attached to the Array that is Output to
the EDIN Data Base.

$BOX INPUT SET. -

NAME DESCRIPTION DEFAULT VALUE

WT(1) Weight of Black Box. 0.

WT(2) X Center of Gravity. 0.
WT(3) Y Center of Gravity. 0.
WT(4) Z Center of Gravity. 0.
WT(5) Moment of Inertia about X. 0.
WT(6) Moment of Inertia about Y. 0.
WT(7) Moment of Inertia about Z. 0.
WT(8) XY Product of Inertia. 0.
WT(9) XZ Product of Inertia. 0.
WT(10) YZ Product of Inertia. 0.
WT(11) Surface Area of Black Box. 0.
WT(12) Volume of Black Box. 0.
WT(13) Frontal Area of Black Box. 0.

Fixed Format Surface Data. - The surface cornerpoint data is
read in two points at a time. The data includes X,Y,Z coordin-
ates of each point and a status indicator for each point. The
status values and their meanings are:

STATUS = 1; First Point of a Section.

STATUS = 2; First Point of a Component.

STATUS = 3; Last Point of a Component.

STATUS = 0; None of the above.

205

Each coordinate data field is specified to be F10.1 and each
status indicator field is snecified to he Il with no blanks
between fields. A surface d!ita set is illustrated below:

X"Y,Z,STATUS,X,Y,Z,STATUS

FORMAT(2(3F10.1,II))

Program Outputs

WAB outputs are of two types. One output is a mass properties
report that is returned to the user. This data presents the
characteristics of each surface form or black box that was input
to WAB and the accumulative subtotals for all inputs. Figure 48
is an example of the WAB output. The other output is the
optional output to the EDIN data base. This is essentially the
same dLata that is presented in the mass properties report except
that a]ll of the data is packed into one array. The array is
given a user specified name and then passed on to the EDIN data
base.

Program Flow. - Figure 49 gives an overview of the WAB program
flowo

20G

:G %3 .?5 ?9 YC. -r 3. 7 3294+0 6: 1Z G = 63B.000 .5

MY .163 9 WE. -: -4: 2. 91 1:5 WZ - -.14020:6 3-.
AS- 1117j. AF 031 3PR - 3. 378i'-

: 3. :99 YOC: - .57312:?4 3 1o --? 6 3. 0 0i 0l

MY - .6322 Z -- 4.11511 Y-.2 0

- 116 71 OL 53 1. 63 "- 8"'

8 9i : ... I :E.1 i :::-- ::;' i: -. . . . 9 ;::. :: :'. : :I+. i;

:01
.: I: : , :-.i0:::; : =4.

. .i. C.... -. --" " ,::. . :: " .. , i-;::;:r: : '- i

i l1 50:3 .i 3_ 7;=; , li:~ :1990, '

.i

Ax .27.439+08 AY .160764?+09 QZE: - t7o~+

. 19290 -. 17 .. : 18 i i. - -.565 0-
S- 08 .22...0. = 106.16. 1. .. R: = 9 .7 7...

FIGURE 48 WAB OUTPUT,

ORIGINAIV PAO-g 2 0 7
op POOR QUAUTW'r

-. : .i d :: : ii .: :::: .: 3 I: . .. :' :: :: :'': '. - -: :
•.: i ::' :[.I d,, 7':1 i. ..i . , - ^L: ;:':: ! ;_', . ,6 3 !I: : ':: : ':'" :

.::i :i!'' :i::::::i ':, ':::;

....' : .,::' [.," . , ,,,:' -.. [J1 . ;i"]. +.i ;£ ':[::::-: . , ;.' :-, : : :;:-i ;

." .-."....:: ' "i :: -'i :

,:::.

.....i ;ii 7: 8:: : ::; :3~:3 .
..... ,iS .i.;:: ± I .$:t+-::::i::: i ","'Y -::: , '' ' i ,-8 :' i ,,:!. !i+ -:, [;:;: .. -i -: :_"' i ;:_::[

i : 0 ..:":',. -: £::' i ::;;: , J. ,1 i ?:.i- . ;i: 5 ::; , , . :. --1:
.:: ".::,: :,,. ,: : .. i:L :: . ::: .i I ,;- r . , :: ::: ;.... . ,,:,c "r.

FIGUR 48 WA OUTPUT, :

i'oo : .; : :

lST ART

READ $IIN DATA

PRINT OUTPUT Y EOF
AND SAVE ON

UNIT 14
NO

COMPUTE DIRECTION COSINES FOR
REFERENCE FRAME TRANSFORMATIONS

EXIT

RU E BLKBX >

FALSE

SREAD A SECTION OF SURFACE %

/ READ COMPUTE PROPERTIES OFF
(SBOX T [... - -- E - -- -I - --- -A T-- -A -- l I

$BOX ONE QUADRILATERAL
DATA

END OF NO SECT=SECT+
SECTI X 9IO 1 QUADSCOMPUTE COMP

PROPERTIES YES

ECT=0

COMP

YES

VEH=VEH+COMPI
COMP= 0

FGRi L Si11 PLI IED FLO!CI,: RT OF W'iA'B PROGRA[i0

208

APPLICATION OF THE SYSTEM

During the contract period several engineering investigations
were conducted for the Engineering Analysis Division and Future
Programs Office at the Johnson Spacecraft Center. These studies
involved extensive use of the Engineering Design and Integra-
tion System (EDIN) and included investigation of several heavy
lift booster concepts, advanced shuttle concepts studies, inte-
grated space station study and others. These investigations
involved the generation of geometry for digital display, aero-
dynamic separation studies, mass properties investigations,
pressure/temperature studies, center of gravity analysis and
performance evaluations including launch and trajectory analysis.
As a result of these studies, the EDIN data base was expanded
to its current level. Figure 50 summarized the current contents
of the EDIN data'base.

The following sections describe the particular study, analysis
or evaluation which was performed.

Heavy Lift Booster (4 SRMS)

This study involved the generation of cornerpoint geometry for
digital display. This particular booster was composed of a 4
SRM first stage, a single SR/4 booster second stage and a solid
rocket third stage. The payload consisted of the shuttle
orbiter (SO147B). As a result of this study, the geometry for
this booster concept now resides in the EDIN geometry library.

Heavy Lift Booster (5 SRMS)

This study involved the generation of cornerpoint geometry for
digital display. In addition, a mass properties evaluation was
performed for the determination of volumetric requirements and
center of gravity travel. This particular booster consisted
of a 5 SRM- first stage, a single SRM second stage and a solid
rocket third stage. As a result of this study, the geometry
and mass properties are readily available in the EDIN library.

Nuclear Waste Disposal Heavy Lift Booster

This evaluation involved the generation of cornerpoint geometry,
a mass properties analysis and a trajectory analysis. This
booster was conceived for disposal of nuclear waste in deep
space. It consisted of a 5 SRM first stage, a single SRM sec-
ond stage, a solid rocket third stage and liquid rocket engine
configuration for the fourth, fifth and six stages. Once the
geometry was created, separation studies involving shroud separa-
tion and staging conditions were duplicated using various EDIN

209

GEOMETRY:

SO147B SHUTTLE ORBITER.

SHUTTLE ORBITER EXTERNAL TANK.

SHUTTLE ORBITER SOLID ROCKET BOOSTERS,,

ESRO SPACE STATION.

NAR SPACE STATION.

HEAVY LIFT BOOSTER (4 SRMS).

HEAVY LIFT BOOSTER (5 SRS).

SO147B STRETCHED SHUTTLE ORBITER.

NUCLEAR WASTE DISPOSAL HEAVY LIFT BOOSTER.

SO0147B HEAVY LIFT BOOSTER.

J2S ENGINE.

LR87 BOOSTER.

LR87 ENGINE,

SSME ENGINE.

AERODYNAMIC DATA.

SHUTTLE ORBITER BASELINE HYPERSONIC.

STANDARD AERODYNAMIC DATA TAPES.

MASS PROPERTIES DATA:

S0147B SHUTTLE ORBITER.

SO.47B SHUTTLE ORBITER EXTERNAL TANK.

S0147B SHUTTLE ORBITER SOLID ROCKET BOOSTER.

HEAVY LIFT BOOSTER THIRD STACE.

PERFORMANCE DATA:

SHUTTLE ORBITER W/SSME (NOMINAL).

SHUTTLE ORBITER W/4 X J2S.

SHUTTLE ORBITER W/5 X J2S.

SHUTTLE ORBITER W/SSME (AOS).

NUCLEAR WASTE DISPOSAL HEAVY LIFT BOOSTER.

SHUTTLE ORBITER SRM,

:-URE 50 EDN DATA BASE CONTENTS,

210

display devices. These separation evaluations were performed
in conjunction with the trajectory analysis. The trajectory
analysis included evaluations of performance to low earth orbit.

S0147B Payload/Body Volumetric Study

A volume and mass property analysis was conducted on the shuttle
orbiter (S0147B) to determine the possibility for fuel. storage.
Volume evaluation on the fuselage including the current payload
area were conducted. In addition, the wing root areas were
evaluated. Compensation for equipment storage as well as on-
board systems were considered.

SO147B Heavy Lift Booster

This study involved the investigation of a heavy lift booster
concept consisting of twin orbiters, an external tank and a
JATO pack for initial boost assistance. Two separate investiga-
tions were conducted to determine the possibility of using a
15 foot and a 16 foot diameter double bubble tanks in the pay-
load area for the booster orbiter. Both nested and unnested
arrangements were evaluated for the propellant requirements.
The tank evaluation yielded the need for a stretched version
on the booster orbiter. Geometry modifications were performed
on the stretched orbiter fuselage to fair the nested double
bubble tanks. Mass property evaluations were conducted on the
stretched version as well as a separation analysis to determine
interference of any booster components.

Space Station Evaluations

This evaluation involved the creation of cornerpoint geometry
for a NAR conceived configuration and the EBRO space stations.
These configurations included the core module, solar array
booms, docking collars, pallets and sub-module. Once the geom-
etry was generated, a compatibility study between the two con-
figurations was conducted. It involved wide use of the EDIN
display and geometry manipulation programs. Several configura-
tions were.analyzed for compatibility. Discrepancies in the
mating of the two systems were identified as well as docking
collar modification requirements.

Evaluation of Shuttle with the J2S Engine

This evaluation provided the performance characteristics of a
space shuttle vehicle using the J2S engines as the main propul-
sion system as an interim replacement for the SSME engines. It
contained reports on payload characteristics, c.g. and weights
analysis and nominal mission trajectory data for a 4 X J2S and

211

5 X J2S engine configuration. The data was compiled and com-
pared to the SSME configuration. A preliminary sizing study
was also conducted on these configurations.

Shuttle Orbiter c.g. Analysis

The EDIN system has been used to determine the controllable
c.g, range of the shuttle orbiter through the speed range from
Mach 20 down to landing speed. The study combined basic theoret-
ical aerodynamic data with experimental incremental control
surface data from the standard aerodynamic data tape. Theoret-
ical aerodynamic data was computed using the DATCOM computer
program for the subsonic-supersonic Mach range and IIABACP for
the hypersonic Mach range. Experimental data was extracted
from the standard data tape using the VL70 program.

Sample Analysis

The use of the EDIN system for a design analysis task involves
the execution of four major tasks:

1. Define the analysis tasks including the technology
areas to be considered, the technological depth and
the study parameters.

2. Select the technology programs from the EDIN library
and establish the sequence of executions including
sizing and matching loops necessary to accomplish the
analysis.

3. Establish the data intercommunication requirements of
the program including both the fixed input data and
the intercommunication data.

4. Generate the run stream recquired to perform the analysis.

Definition of Analysis Tasks. - Figure 51 illustrates the defini-
tion of a group of analysis tasks involving the simple sizing
and performance evaluation of a parameter series of all expend-
able launch vehicles. The study parameters are:

Payload Weight

Number of Stages

Fuel Type

Oxydizer Type

Tank Diameter

212

START CREATES A TEMPORARY INTER-
PROGRAM DATA BASE.

USER INTERACTION.

SIZER PRELIMINARY SIZING BASED ON
ESTIMATED MASS FRACTION AND
IDEAL VELOCITY.

SET/STAGING ESTABLISHES LOOP CRITERIA.

TANK COMPUTES TANK VOLUMES
AREAS AND MASS PROPERTIES

O

o WAATS COMPUTES STAGE WEIGHT AND
MASS FRACTION.

ROBOT MAXIMIZE LAUNCH PERFORMANCE
AND IDEAL VELOCITY DISTRIBUTION.

VIDEAL COMPUTES IDEAL VELOCITY AND
UPDATE DATA BASE.

USER INTERACTION

REPORT WEIGHT STATEMENT AND
PERFORMANCE SUMMARY

FIGURE 51 LAUNCH PERFORMANCE AND SIZING STUDY,

213

Thrust-to-Weight Ratio

Engine Chamber Pressure

Number of Engines

Selection of Analysis Programs. - The analysis is .to be perform-
ed using the following EDIN programs:

SIZER Preliminary Sizing Program which Estimates the
Propellant Weights and Inert Weights of all
Stages based upon the Input Stage Mass Fraction
and Specific Impulse.

TANK Program to Compute the Fuel and Oxidizer.Tank
Weights and Geometry based upon the Propellant
Qpantity, Mixture Ratio, Structural Factors, etc.

WAATS Weights Analysis Program which Computes all Sub-
system Weight based upon Historical Weight
Estimating Relations.

ROBOT Launch Performance Program which Optimizes the
Control History and Stage Time.

Intercommunication Data. - The following table describes the
program intercommunication requirements for the EDIN programs
selected. Fixed input requirements for the program are dis--
cussed earlier.

INPUT OUTPUT

SIZER. -

PAYLD - Payload WSB(I) - Start Burn Weight
NSTAGE - Number of Stages WEB(I) - End Burn Weight
XL,AMDP(I) - Mass Fraction WPR(I) - Propellant Weight
VIDEAL(I) - Ideal Velocity WI(I) - Inert Weight
XISP(I) - Specific Impulse WPL(I) - Stage Payload
WPEST(I) - Propellant Estimate

TANK. -

DTANK(I) - Diameter of Tanks Tank Geometry (File 8)
WPR(I) - Propellant Wt. LT - Length(S)

VOL - Volume (s)
SA - Area(s)
WP - Propellant Wt(s)
WTK - Tank Weights
WAC - Accessory Weights
WTOT - Total Weights

214

INPUT OUTPUT

WAATS. -

ENG(I) - Number of Engines WCOMP(75) - Dry Weight
THR(I) - Thrust WCOMP(72) - Gross Weight
WTKG - Tank Weight WPARM(S) - Mass Fraction
SBODY - Body Area

ROBOT. -

WSBL - Stage Gross Weights RBPORT - Stage Report
WPL(I) - Payload
XISP - Specific Impulse
THR(I) - Thrust

VIDEAL. -

RBPORT - Stage Report VIDEAL - IDEAL Velocity
XISP - Specific Impulse
NSTAGE - Number of Stages

Generation of a Run Stream. - Each box in figure 51 represents
a sequence of tasks. The executive control statements and data
requirements to accomplish the tasks are stored as partial run
stream elements in the data base file EDIN-WAATS. The linkage
of the elements to perform the analysis is shown in figure 52,

The elements will be preprocessed by the DLG processor as the
analysis proceeds to satisfy data base requests contained therein.
DLG preprocessing produces executable partial run streams which
are merged with the run stream using the @ADD control statement.

The sizing analysis is initiated by the control statement:

@ADD EDIN-WAATS.START

The start task sequence shown below performs the necessary
file assignments and constructs a temporary intercommunication
data base DBASE.

,.....

- .O POOR QU
1

215

START

USER INTERACTION

OOP/SI ZIN G

'00" -
SIz ER P/S T AGING ROBOT VIDEAL

SET/STAGING/ TANK WAATS

FISUE 52 PARTIAL RUNI STREAM LI(KAGE,

BK A temporary output file.

TPF$ The temporary program file assigned to each run.

WORK The file on which the DLG processor absolute
element is stored.

UNIT 25 The interprogram data base.

UNIT 14 The special EDIN output file for EDIN program
data.

E A use assigned name for the EDIN-WAATS file.

D A user assigned name for the WORK file.

One page of design data is constructed on Unit 25 through the
DLG processor directive:

'CREATE DBASE'

The actual data is stored in the file element EDIN-WAATS.CREATE/
EEE as follows:

.---. ---.

E. IN-E.. i f ::j

IF I

El "ID-

J-1z :'. "- .1. P-1 C r F r ii,1. " ..

.. I II

ir ii::I. I. .::::I; i ; :, i ii. : :. i i

.' . ." :...:iE. .: . .. [.. . : :1

.V.,cir I i:i '. i . i:i I E .r

ORIGINAL PAGE L
OF POOR QUALITYI

217

oK .1

z'p:i. :i. I : . a n ,.

'.~ ~i I - . .I i; . ~ . I I

-. I, -- .-

'",_M i ; 7 :ii. "' 0 010- , M W 0- 0 ME.,W &. --: ,it[.: .

0 0 rz kip-1 Mp TKM:/MHT

Mr- 1 NM4vWKihPR &SR

V .: N .i F .N i v 1 T '

:D fiC... f. _ f . I l; 0' v .+ PI

IIk

..ollow ...ng ..th-6l.cra io of D" .. ter.i.aue

ci o o.i. .. o a in t

:.user teraction is an interrupt in the execution sequence.

The user has the option of interacting with the data base, to
make parametric modifications or to construct a summary report.
kequczstea data base information Wil he pl~aced on the element,
REPORT resid&ing in the temporamry program file TPF$.

2) a .RIGAL PAG'. ...

' .. ; P U i'A:' '"'X04

;" u':. i'i::

: "' .':'iK i > " ! .- L "

:-~.. i. ,. . -. ".!: ' : :; ..L. .+. , :., - . - , < ;"; .'-
. . .i " • " ' - - , " . -

[; ' ;;;.] ::, ... ! , ; : : , - . . .

• -" " .' ~: - . +, " • " , • . . i 7 - '.

: . ' 7

Following the initial creation of DBASE, there is a "user
interaction" point° When operating in the demand mode, the
user intraction is an interrupt in the execution sequence°

] e user has the option of interacting with the data base, to
make parametric mnodifications or to construct a summary report°
Keuusted data.~ base .nformation \;ill be pl.ced on theu eleren-u
:i SPORT reisiding i. the temp~oary p -ogram file TI E$,

2.+ 8 O 9LFI N8aL PAG
poo gX I

The analysis is restarted with the executive control statement:

@ADD E.LOOP/SIZING

The element LOOP/SIZING shown below contains the control state-
ments and data required to perform the sizing loop shown in
figure 51

i ...R ..i:: i .i .' i T .-; . l : :

the determination of optimal performance and the calculation

of ideal velocity Peliinary sizing data and control state-

:21i I

The sizing loop contains instructions for executing the pre-
liminary sizer, the actual weighing of the individual stages,
the determination of optimal performance and the calculation
of ideal velocity. Preliminary sizing data and control state-
ments are stored in E.SIZER.

, .Ii. I . , .

Performance input data and control statements are stored in
E.ROBOT.

II

.-:1 ' ..:
I Ii'' "t i L

,:H; ,.'"'' ',. F [,

i: hi iT

I, , ,'r fI i i:ri i:..I : . =I .A I

2"20,"

• " "' '" f " . ; i _ ;1 " •

Iii

2I2 0.:i I ,
i i .. i:[[ll

22.0

. f..

Hi ::: ;i..: IH I . .::: 1 : .::.

in the element E.VIDEAL.

I"i; :+ .1 , :, ,

The staging loop shown below contains the control statements
and data required to generate weights data for the number of
stages specified. The three major elements are the establish-
ment of the looping criteria, the calculation of tank weight
and the calculation of subsystem weights.

i 7 .i r :.'.

J . I ..: I I

I..

• .221

The looping criteria is contained in the element E.SET/STAGING.

When the above element is processed by DLG, the @SETC control
statement will contain the stage counter 'S7 from the data base.
The @TEST control statement will contain the study parameter
'NSTAGE' from the data base. The above control statements,
together with the @JUiMP control statement, will cause the Exec
8 control to pass to the statement label @ENDSTG when the stage
counter 'S' reaches a value of 'NSTAGE. Since Y@fNDSTG is
in the element E.LOOP/SIZING, the staging loop will be termina-
ted and the launch performance sequence will be started.

The control statements and data for tank sizing are contained
in E. TANKo

22)' i

L!

222

.1

1. 1

The control statements and data for the calculation of sub-
system weights are contained in the element E.WAATS.

MTI 1IRS2 0WH.V .

$; 1 91

.0' i0i[T i I li H'

" .AD iD I-lAS:).,'iL I

D W R ..I..-.-: I. 1

i **" -Ti ... G PAG y

"ADPOOR QUALI

... -: L ,. I i 1: 9 i [

MR 377' ' -',I :: 0%;:'" .:-:_.

OF POOR QuATITI

223

an.lyis requirements. The Sample Analysis presented above
is an illustration only. The EDIN system offr the potentialORI iGI'AL PAGE .

'-[.. ',... ! i -:W i.s .

There are many techniques which can be employed to meet the
analysis requirements. The Sample Analysis presented above
is an illustration only. The EDIN system offers the potential
user the capability of performing design analysis ranging from
the simpliest design sequence to the most complex network of
tasks.

22,1

CONCLUDING REMARKS

A computer aided design environment has been created with the
EDIN system. The components of the system are an Univac 1100
series computer and associated software, a flexible data base
management system and a library of independent technology com-
puter programs. The EDIN analysis is formulated as a run stream
in the language of the computer operating system and the technol-
ogy module input data. Both elements of the run stream can be
augmented with data base requests which are satisfied by a spec-
ial processor called DLG. The EDIN system provides the users
with the ability to formulate the computer aided design problem
at the task level in much the same manner as is employed in the
industrial design process. The process can be interrupted at
any point in the analysis. Demand interaction with the programs
and data bases can be performed. Each program is executed
sequentially and is "unaware" of its contribution to a larger
and more comprehensive engineering process. The result is a
flow of program executions which are identical to the normal
flow but with a higher degree of control over data inter-
communication.

The EDIN system represents a major step towards the development
of a true computer aided design environment at Johnson Space-
craft Center.

225

REFERENCES

1. Gregory, T. J., Peterson, R. J. and Wyss, J. A.: Perform-
ance Tradeoffs and Research ProbJems for Hypersonic
Transonic Transports. AIAA Journal of Aircraft. July-
August 1965.

2, Gold, R. and Ross, S.: Automated Mission Analysis Using
a Parametric Sensitivity Executive Program. AAS Paper
68-1.46, presented at the AAS/AIAA Astronautics Special-
ist Conference, September 1968.

3, Wennegal, G. Jo, Mason, P. W. and Rosenbaum, J. D.: IDEAS,
Integrated Design and Anaiysis System. SAE Paper 68-0728,
Presented to SAE Aeronautics and Space Engineering Meet-
ing. October 1968.

4. Adams, J. D.: Vehicle Synthesis of High Speed Aircraft,
VSAC, Volume 1. USAF AFFDL-TR-71-40. 1971.

5. Oman, B,: Vehicle Synthesis for High Speed Aircraft, VSAC,
Volume II. USAF AFFDL--TR-71-40. 1971.

6, Lee, V. A., Bal.l, H. G, Wadsworth, E A. Moran, W. J. and
McLead, J. D. Computerized Aircraft Synthesis. A1AA
Journal cf Aircraft. September,.--October 1967.

7, Herbst, W. B. and Ross, H.: Application of Computer Aided
Design Progr:ms for the Management of Fighter Development
Projects. AILA Paper 70-364, Presented to AIAA Fighter
Aircraft Conference. March 1970.

8, Wallace, R. E,: A Computerized System for the Preliminary
Design of Commercial Airplanes. AIAA Paper 72-793, Los
Angeles, California. 1972.

9, Hague, D, S. and Glatt, C. R.: Optimal Design Integration
of Military Flight Vehicles - ODIN/MFV. AFFDL-TR-72-132.
1973.

10, Glatt, C. R,, Hague, D. S. and Watson, D. A.: ODINEX: An
Executive Computer Program for Linking Independent Pro-
grams. NASA CR--2296. National Aeronautics and Space
Administration. Washington D. C0 September 1973,

11i Fulton, R. E', Sobieszczanski, J. and Landrum, E. A.: An
Integrated Computer Sy.stem for Preliminary Design of
Advanced Aircraft, AIAA Pape:. 72-796. Los .ngeles,
California, 1972.

?2

12. Rhodes, T. R.: The Computer Aided Design Environment (COM-
RADE) Project. Presented at the 1973 National Computer
Conference. New York. June 1973.

13. Rau, Timothy R. and Decker, John P.: ODIN: Optimal Design
Integration System for Synthesis of Aerospace Vehicles.
AIAA Paper No. 74-72. AIAA 12th. Aerospace Sciences
Meeting. 1974.

14. Love, Eugene S.: Advanced Technology and the Space Shuttle.
Astronautics and Aeronautics, Volume II, No. 2.
February 1973.

15. Henderson, Arthur, Jr.: Aerothermodynamic Technology for
Space Shuttle and Beyond. AIAA Paper No. 73-59, pre-
sented at the AIAA 9th. Annual Meeting and Technical
Display. January 1973.

16. Phillips, W. Pelham, Decker, John P., Rau, Timothy R. and
Glatt, C. R.: Computer Aided Space Shuttle Orbiter
Wing Design Study. NASA TN D-7478. 1973.

17. Harris, R. V., Jr.: An Analysis and Correlation of Aircraft
Wave Drag. NASA TM X-947. 1974.

18. Norton, P. and Glatt, C. R.: VAMP: A Computer Program for
Calculating the Volume, Area and Mass Properties of
Aerospace Vehicles. NASA CR-2419. 1974.

19. Vanco, Michael: Computer Program for Design Point Perfor-
mance of Turbojet and Turbofan Engine Cycles. NASA
TM X-1340. 1967.

20. Fishbach, Laurence H. and Koenig, Robert W.: GENENG II -
A Procram for Calculating Design and Off-Design Perfor-
mance of Two and Three Spool Turbofans with as Many as
Thrch- Nc . N7ZC7\ TN L-6553. 1972

21. Wilwerth, R. E.,. Rosenbaum, R. C. and Chuck, Wong: PRESTO:
Program for Rapid Earth to Space Trajectory Optimiza-
tion. NASA CR-158. 1965.

22. Stein, L. H., Matthews, M. L. and Frenk, J. W.: STOP - A
Computer Program for Supersonic Transport Trajectory
Optimization. NASA CR-793. 1967.

227

23 .Kinsev, Don W. and Do.'ers, I)ouglas. L. : A Computerijed Pro-
cedure to Obtain the Coordiinats and Section Charactcr-
istics of NACA D,, 's, i n ated Airfoils. Technical Report
AF.DL-TR-7]-87. Air Force Flight Dynamics Laboratory,

Wright-Patterson Air Force Base, Ohio. 1971.

24. Hague, D. S. and Glatt, C. R.: An Introduction to Multi-
Variable Search Tichnioues for Parameter Optimization.

NASA CR-73200. 1968.

25, Swann, R. T. , et. al.: One-Dimensional Numerical Analysis
of the Transient Response of Thermal Protection Systems.
NASA TN D-2976. 1965.

26, 1 H, 1 . : A Comput : Prog c : for De -rn nnI g
Aircraft Developent and Production Costs. Rand Cornor-
tion Report iR-5221--P.. 1967.

27. GlLt, C, Re: I'AGE: A Computer Coe1de for GC~enrati.ng
Picture-Tike Imagos of Aerospace Vchicles. NSA CR-
2430. 1974.

28. CMatt, C R, ,, Iague, D. S. and Reciners, S, J.: Prdi ction
of Sonic Boom from tExprimLntal Near.-Field Overp.rc-sure
Data, Aothod and RJsults. NASA Ci 2041. 1974.

29. Clatt, C. R., R incrs, S. J. and Hagcue, D. S Prediction
of Sonic Dcum from E:primn. l Near-ield Overpressure
]D3ihe , Dat a se C(onstructi.on. NASA (CR--2442. 1. 974 .

30 G]at , C , : ATS: A Comrnutr Pro;gram for eights Ralysis
0(Advanced Transportation Systems. NSA CR-2,20. 1974,

31. Gentry, A : Hypersonic Arbitrary Body Aerodynamic Program.
Douglas Report. DAC56080. June 1967.

32. Brauer, G. L., Cornick, D. E., Steinhoff, R. T. and Steven-
son, R.: Program to Optimize Simulated Trajectories
(POST). Martin Marietta. NASA MCR-73-206. October 1973.

33. Reiners, S. J., Glatt, C. R., Hirsch, G. No and Alford, G,!GTM: Geometry Technology Moduleo Aerophvsics Research
Corporation, 3TN-09. December 1974,

34. Glatt, C. R. and Hirsch. Go No: PLOTTR An Innepenant Com-puter Program for the Ceneration of Graphical Di3ays,
Aerophysics Research Corporation. JTN-0V December 1974.

228

35. Glatt, C. R. and Colquitt, W. N.: The DLG Processor - A
Data Management Executive for the Engineering Design
Integration System (EDIN). Aerophysics Research
Corporation. JTN-10. December 1974.

36. Braley, Dennis M.: Users Guide for the Automatic. Flow
Chart Generator Program (FLOGEN). JSC Internal Note
No. 73-FM-62. April 1973.

229

